• Clin. Chem. Lab. Med. · Jun 2020

    The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: a retrospective study.

    • Yufen Zheng, Ying Zhang, Hongbo Chi, Shiyong Chen, Minfei Peng, Lifei Luo, Linping Chen, Jun Li, Bo Shen, and Donglian Wang.
    • Department of Clinical Laboratory, Taizhou Hospital, Wenzhou Medical University, Linhai, P.R. China.
    • Clin. Chem. Lab. Med. 2020 Jun 25; 58 (7): 1106-1115.

    AbstractObjectives In December 2019, there was an outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, and since then, the disease has been increasingly spread throughout the world. Unfortunately, the information about early prediction factors for disease progression is relatively limited. Therefore, there is an urgent need to investigate the risk factors of developing severe disease. The objective of the study was to reveal the risk factors of developing severe disease by comparing the differences in the hemocyte count and dynamic profiles in patients with severe and non-severe COVID-19. Methods In this retrospectively analyzed cohort, 141 confirmed COVID-19 patients were enrolled in Taizhou Public Health Medical Center, Taizhou Hospital, Zhejiang Province, China, from January 17, 2020 to February 26, 2020. Clinical characteristics and hemocyte counts of severe and non-severe COVID patients were collected. The differences in the hemocyte counts and dynamic profiles in patients with severe and non-severe COVID-19 were compared. Multivariate Cox regression analysis was performed to identify potential biomarkers for predicting disease progression. A concordance index (C-index), calibration curve, decision curve and the clinical impact curve were calculated to assess the predictive accuracy. Results The data showed that the white blood cell count, neutrophil count and platelet count were normal on the day of hospital admission in most COVID-19 patients (87.9%, 85.1% and 88.7%, respectively). A total of 82.8% of severe patients had lymphopenia after the onset of symptoms, and as the disease progressed, there was marked lymphopenia. Multivariate Cox analysis showed that the neutrophil count (hazard ratio [HR] = 4.441, 95% CI = 1.954-10.090, p = 0.000), lymphocyte count (HR = 0.255, 95% CI = 0.097-0.669, p = 0.006) and platelet count (HR = 0.244, 95% CI = 0.111-0.537, p = 0.000) were independent risk factors for disease progression. The C-index (0.821 [95% CI, 0.746-0.896]), calibration curve, decision curve and the clinical impact curve showed that the nomogram can be used to predict the disease progression in COVID-19 patients accurately. In addition, the data involving the neutrophil count, lymphocyte count and platelet count (NLP score) have something to do with improving risk stratification and management of COVID-19 patients. Conclusions We designed a clinically predictive tool which is easy to use for assessing the progression risk of COVID-19, and the NLP score could be used to facilitate patient stratification management.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…