• Shock · May 2021

    Contractility and Myofibrillar Content in Skeletal Muscle are Decreased During Post-Sepsis Recovery, but not During the Acute Phase of Sepsis.

    • Kristen T Crowell and Charles H Lang.
    • Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania.
    • Shock. 2021 May 1; 55 (5): 649-659.

    AbstractConvalescence in humans after severe sepsis occurs over weeks to months and is associated with prolonged functional disabilities and impaired quality-adjusted survival. While much is known regarding the acute early phase of sepsis, there is a knowledge gap pertaining to restoration of muscle mass and function after elimination of the septic nidus. We used a sepsis-recovery model-where cecal-ligation-puncture (CLP) was performed in adult male mice followed 24 h later by removal of the cecum and antibiotic treatment-to assess changes in the abundance of muscle contractile proteins and function during the acute phase of sepsis (24 h post-CLP) and during the recovery phase (day 10 post-CLP). Although body weight and food consumption decreased acutely with sepsis, both had normalized by day 10; however, extensor digitorum longus mass remained decreased 10%. During acute sepsis, there were few contractile defects or significant changes in contractile proteins. In contrast, during sepsis recovery, specific maximum isometric twitch and specific maximum tetanic force were decreased ≈50%, compared with time-matched pair-fed controls, and defects were independent of the concomitant reduction in muscle mass. Force generation in sepsis-recovery mice was decreased 30% with increasing stimulus frequency. Contractile defects during sepsis-recovery were associated with 50% to 90% reductions in thin filament (troponin T, troponin I, tropomyosin, α-sarcomeric actin), thick filament (myosin heavy and myosin light chains), Z-disc (α-actinin 3), and M-band (myomesin-2) proteins, but no change in the intermediate filaments desmin and vimentin. During sepsis recovery, myofibrillar protein synthesis did not differ from control, but synthesis of sarcoplasmic proteins was increased 60%. These data suggest intrinsic defects in muscle contractile function exist during the recovery phase of sepsis and may negatively impact convalescence.Copyright © 2020 by the Shock Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.