• Journal of neuro-oncology · Oct 2017

    Impact of removed tumor volume and location on patient outcome in glioblastoma.

    • Al-Wala Awad, Michael Karsy, Nader Sanai, Robert Spetzler, Yue Zhang, Yizhe Xu, and Mark A Mahan.
    • Department of Neurosurgery, Clinical Neuroscience Center, University of Utah, Fifth Floor, 175 North Medical Drive, Salt Lake City, UT, 84132, USA.
    • J. Neurooncol. 2017 Oct 1; 135 (1): 161-171.

    AbstractGlioblastoma is an aggressive primary brain tumor with devastatingly poor prognosis. Multiple studies have shown the benefit of wider extent of resection (EOR) on patient overall survival (OS) and worsened survival with larger preoperative tumor volumes. However, the concomitant impact of postoperative tumor volume and eloquent location on OS has yet to be fully evaluated. We performed a retrospective chart review of adult patients treated for glioblastoma from January 2006 through December 2011. Adherence to standardized postoperative chemoradiation protocols was used as an inclusion criterion. Detailed volumetric and location analysis was performed on immediate preoperative and immediate postoperative magnetic resonance imaging. Cox proportional hazard modeling approach was employed to explore the modifying effects of EOR and eloquent location after adjusting for various confounders and associated characteristics, such as preoperative tumor volume and demographics. Of the 471 screened patients, 141 were excluded because they did not meet all inclusion criteria. The mean (±SD) age of the remaining 330 patients (60.6% male) was 58.9 ± 12.9 years; the mean preoperative and postoperative Karnofsky performance scores (KPSs) were 76.2 ± 10.3 and 80.0 ± 16.6, respectively. Preoperative tumor volume averaged 33.2 ± 29.0 ml, postoperative residual was 4.0 ± 8.1 ml, and average EOR was 88.6 ± 17.6%. The observed average follow-up was 17.6 ± 15.7 months, and mean OS was 16.7 ± 14.4 months. Survival analysis showed significantly shorter survival for patients with lesions in periventricular (16.8 ± 1.7 vs. 21.5 ± 1.4 mo, p = 0.03), deep nuclei/basal ganglia (11.6 ± 1.7 vs. 20.6 ± 1.2, p = 0.002), and multifocal (12.0 ± 1.4 vs. 21.3 ± 1.3 months, p = 0.0001) locations, but no significant influence on survival was seen for eloquent cortex sites (p = 0.14, range 0.07-0.9 for all individual locations). OS significantly improved with EOR in univariate analysis, averaging 22.3, 19.7, and 13.2 months for >90, 80-90, and 70-80% resection, respectively. Survival was 22.8, 19.0, and 12.7 months for 0, 0-5, and 5-10 ml postoperative residual, respectively. A hazard model showed that larger preoperative tumor volume [hazard ratio (HR) 1.05, 95% CI 1.02-1.07], greater age (HR 1.02, 95% CI 1.01-1.03), multifocality (HR 1.44, 95% CI 1.01-2.04), and deep nuclei/basal ganglia (HR 2.05, CI 1.27-3.3) were the most predictive of poor survival after adjusting for KPS and tumor location. There was a negligible but significant interaction between EOR and preoperative tumor volume (HR 0.9995, 95% CI 0.9993-0.9998), but EOR alone did not correlate with OS after adjusting for other factors. The interaction between EOR and preoperative tumor volume represented tumor volume removed during surgery. In conclusion, EOR alone was not an important predictor of outcome during GBM treatment once preoperative tumor volume, age, and deep nuclei/basal ganglia location were factored. Instead, the interaction between EOR and preoperative volume, representing reduced disease burden, was an important predictor of reducing OS. Removal of tumor from eloquent cortex did not impact postoperative KPS. These results suggest aggressive surgical treatment to reduce postoperative residual while maintaining postoperative KPS may aid patient survival outcomes for a given tumor size and location.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…