-
- G N Kawchuk, R Guan, C Keen, B Hauer, and G Kondrak.
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada. greg.kawchuk@ualberta.ca.
- Eur Spine J. 2020 Aug 1; 29 (8): 1917-1924.
PurposeArtificial intelligence algorithms can now identify hidden data patterns within the scientific literature. In 2019, these algorithms identified a thermoelectric material within the pre-2009 chemistry literature; years before its discovery in 2012. This approach inspired us to apply this algorithm to the back pain literature as the cause of back pain remains unknown in 90% of cases.MethodsWe created a subset of all PubMed abstracts containing "back" and "pain" and then trained the Word2vec algorithm to predict word proximity. We then identified word pairings having high vector proximities between three spinal domains: anatomy, pathology and treatment. We plotted both between-domain and within-domain proximities then used the highest proximity pairs as ground truths in analogy testing to identify known associations (e.g., Canal is to Stenosis as Multifidus is to ?) RESULTS: We found 50,038 abstracts resulting in 27,984 unique words and 108,252 instances of "back pain". Ground truth pairings ranged in proximity from 0.86 to 0.70. Plotting revealed unique proximity representations between the three spine domains. From analogy testing, we identified 13 known word associations (pars_interarticularis is to stress_reaction as nerve_root is to compression).ConclusionsArtificial intelligence algorithms can successfully extract complex concepts from back pain literature. While use of AI algorithms to discover potentially unknown word associations requires future validation, our results provide investigators with a novel tool to generate new hypotheses regarding the origins of LBP and other spine related topics. To encourage use of these tools, we have created a free web-based app for investigator-driven queries.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.