-
- Gabriel Mangeat, Russell Ouellette, Maxime Wabartha, Benjamin De Leener, Michael Plattén, Virginija Danylaité Karrenbauer, Marcel Warntjes, Nikola Stikov, Caterina Mainero, Julien Cohen-Adad, and Tobias Granberg.
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada.
- J Neuroimaging. 2020 Sep 1; 30 (5): 674-682.
Background And PurposeHereditary diffuse leukoencephalopathy with spheroids (HDLS) and multiple sclerosis (MS) are demyelinating and neurodegenerative disorders that can be hard to distinguish clinically and radiologically. HDLS is a rare disorder compared to MS, which has led to occurrent misdiagnosis of HDLS as MS. That is problematic since their prognosis and treatment differ. Both disorders are investigated by MRI, which could help to identify patients with high probability of having HDLS, which could guide targeted genetic testing to confirm the HDLS diagnosis.MethodsHere, we present a machine learning method based on quantitative MRI that can achieve a robust classification of HDLS versus MS. Four HDLS and 14 age-matched MS patients underwent a quantitative brain MRI protocol (synthetic MRI) at 3 Tesla (T) (scan time <7 minutes). We also performed a repeatability analysis of the predicting features to assess their generalizability by scanning a healthy control with five scan-rescans at 3T and 1.5T.ResultsOur predicting features were measured with an average confidence interval of 1.7% (P = .01), at 3T and 2.3% (P = .01) at 1.5T. The model gave a 100% correct classification of the cross-validation data when using 5-11 predicting features. When the maximum measurement noise was inserted in the model, the true positive rate of HDLS was 97.2%, while the true positive rate of MS was 99.6%.ConclusionsThis study suggests that computer-assistance in combination with quantitative MRI may be helpful in aiding the challenging differential diagnosis of HDLS versus MS.© 2020 The Authors. Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.