• Plos One · Jan 2018

    Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models.

    • Cheng-Shyuan Rau, Pao-Jen Kuo, Peng-Chen Chien, Chun-Ying Huang, Hsiao-Yun Hsieh, and Ching-Hua Hsieh.
    • Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan.
    • Plos One. 2018 Jan 1; 13 (11): e0207192.

    BackgroundThe purpose of this study was to build a model of machine learning (ML) for the prediction of mortality in patients with isolated moderate and severe traumatic brain injury (TBI).MethodsHospitalized adult patients registered in the Trauma Registry System between January 2009 and December 2015 were enrolled in this study. Only patients with an Abbreviated Injury Scale (AIS) score ≥ 3 points related to head injuries were included in this study. A total of 1734 (1564 survival and 170 non-survival) and 325 (293 survival and 32 non-survival) patients were included in the training and test sets, respectively.ResultsUsing demographics and injury characteristics, as well as patient laboratory data, predictive tools (e.g., logistic regression [LR], support vector machine [SVM], decision tree [DT], naive Bayes [NB], and artificial neural networks [ANN]) were used to determine the mortality of individual patients. The predictive performance was evaluated by accuracy, sensitivity, and specificity, as well as by area under the curve (AUC) measures of receiver operator characteristic curves. In the training set, all five ML models had a specificity of more than 90% and all ML models (except the NB) achieved an accuracy of more than 90%. Among them, the ANN had the highest sensitivity (80.59%) in mortality prediction. Regarding performance, the ANN had the highest AUC (0.968), followed by the LR (0.942), SVM (0.935), NB (0.908), and DT (0.872). In the test set, the ANN had the highest sensitivity (84.38%) in mortality prediction, followed by the SVM (65.63%), LR (59.38%), NB (59.38%), and DT (43.75%).ConclusionsThe ANN model provided the best prediction of mortality for patients with isolated moderate and severe TBI.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.