• Arch Orthop Trauma Surg · Dec 2020

    Varying development of femoral and tibial subchondral bone tissue and their interaction with articular cartilage during progressing osteoarthritis.

    • A Lahm, D Dabravolski, J Rödig, J Esser, C Erggelet, and R Kasch.
    • Department of Orthopaedics and Orthopaedic Surgery, Ernst-Moritz-Arndt University Greifswald, F.-Sauerbruch Str., 17475, Greifswald, Germany. alahm@uni-greifswald.de.
    • Arch Orthop Trauma Surg. 2020 Dec 1; 140 (12): 1919-1930.

    IntroductionDifferences between tibial and femoral joint surfaces and knee compartments concerning coupled bone and cartilage turnover or bone-cartilage cross talk have not been previously examined, although the mechanical and biological interaction of the mineralized subchondral tissues with articular cartilage is of great importance for advancing osteoarthritis.Materials And MethodsTherefore, with the help of immunohistochemistry and real-time polymerase chain reaction (RT-PCR), human knee joint cartilage tissue was investigated for expression of key molecules of the extracellular matrix and cartilage composition (collagen type I and II, aggrecan) plus proteoglycan content (colorimetric analysis). Furthermore, we correlated the results with 3D microcomputed tomography of the underlying subchondral bone (high-resolution micro-CT system). Measurements were performed in dependence of the anatomical site (femoral vs. tibial, medial and lateral each) to identify regional differences during the osteoarthritic process. From an enduring series of 108 patients undergoing implantation of TKA, 34 osteochondral samples with lesions macroscopically classified as ICRS grade 1b (group A) and 34 samples with ICRS grade 3a/3b lesions (group B) were compared with 21 healthy controls.ResultsConcerning 3D analysis, the medial femoral condyle and tibia showed the most significant increase in bone volume fraction and a decrease in the trabecular number in group B frequently accompanied by subchondral bone resorption pits and enchondral ossification. Under physiological conditions, tibia plateaus show lower bone volume fraction than the corresponding femoral site and this difference enlarges with advancing OA. Partially even contradictory behavior was observed such as trabecular separation at the lateral tibial and medial plateau in osteochondral OA samples of the same patients. Collagen type II expression levels show faster and varying changes than type I during the OA process, leading to a lower positive or negative correlation with bone microstructural analysis, especially on the tibia plateau.ConclusionsStructural bone and cartilage parameter changes showed varying developments and correlations among each other in the different compartments of the knee. As a clinical conclusion, therapies to postpone or prevent cartilage degeneration by influencing the loss of mineralized bone could be site dependent.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…