• Ann. Intern. Med. · Jan 2020

    The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement.

    • David M Kent, Jessica K Paulus, David van Klaveren, Ralph D'Agostino, Steve Goodman, Rodney Hayward, IoannidisJohn P AJPAMeta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California (S.G., J.P.I.)., Bray Patrick-Lake, Sally Morton, Michael Pencina, Gowri Raman, Joseph S Ross, Harry P Selker, Ravi Varadhan, Andrew Vickers, John B Wong, and Ewout W Steyerberg.
    • Predictive Analytics and Comparative Effectiveness (PACE) Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts (D.M.K., J.K.P., J.B.W.).
    • Ann. Intern. Med. 2020 Jan 7; 172 (1): 354535-45.

    AbstractHeterogeneity of treatment effect (HTE) refers to the nonrandom variation in the magnitude or direction of a treatment effect across levels of a covariate, as measured on a selected scale, against a clinical outcome. In randomized controlled trials (RCTs), HTE is typically examined through a subgroup analysis that contrasts effects in groups of patients defined "1 variable at a time" (for example, male vs. female or old vs. young). The authors of this statement present guidance on an alternative approach to HTE analysis, "predictive HTE analysis." The goal of predictive HTE analysis is to provide patient-centered estimates of outcome risks with versus without the intervention, taking into account all relevant patient attributes simultaneously. The PATH (Predictive Approaches to Treatment effect Heterogeneity) Statement was developed using a multidisciplinary technical expert panel, targeted literature reviews, simulations to characterize potential problems with predictive approaches, and a deliberative process engaging the expert panel. The authors distinguish 2 categories of predictive HTE approaches: a "risk-modeling" approach, wherein a multivariable model predicts the risk for an outcome and is applied to disaggregate patients within RCTs to define risk-based variation in benefit, and an "effect-modeling" approach, wherein a model is developed on RCT data by incorporating a term for treatment assignment and interactions between treatment and baseline covariates. Both approaches can be used to predict differential absolute treatment effects, the most relevant scale for clinical decision making. The authors developed 4 sets of guidance: criteria to determine when risk-modeling approaches are likely to identify clinically important HTE, methodological aspects of risk-modeling methods, considerations for translation to clinical practice, and considerations and caveats in the use of effect-modeling approaches. The PATH Statement, together with its explanation and elaboration document, may guide future analyses and reporting of RCTs.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…