• J Gen Intern Med · Nov 2020

    Achieving Value in Population Health Big Data.

    • Daniel D Bu, Shelley H Liu, Bian Liu, and Yan Li.
    • Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
    • J Gen Intern Med. 2020 Nov 1; 35 (11): 3342-3345.

    AbstractSeveral population health big data projects have been initiated in the USA recently. These include the County Health Rankings & Roadmaps (CHR) initiated in 2010, the 500 Cities Project initiated in 2016, and the City Health Dashboard project initiated in 2017. Such projects provide data on a range of factors that determine health-such as socioeconomic factors, behavioral factors, health care access, and environmental factors-either at the county or city level. They provided state-of-the-art data visualization and interaction tools so that clinicians, public health practitioners, and policymakers can easily understand population health data at the local level. However, these recent initiatives were all built from data collected using long-standing and extant public health surveillance systems from organizations such as the Centers for Disease Control and Prevention and the U.S. Census Bureau. This resulted in a large extent of similarity among different datasets and a potential waste of resources. This perspective article aims to elaborate on the diminishing returns of creating more population health datasets and propose potential ways to integrate with clinical care and research, driving insights bidirectionally, and utilizing advanced analytical tools to improve value in population health big data.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.