-
- Joan A Casey, Jonathan Pollak, M Maria Glymour, Elizabeth R Mayeda, Annemarie G Hirsch, and Brian S Schwartz.
- Robert Wood Johnson Foundation Health and Society Scholars Program, University of California, San Francisco, California; Department of Environmental Science, Policy, and Management, University of California, Berkeley, California. Electronic address: joanacasey@berkeley.edu.
- Am J Prev Med. 2018 Mar 1; 54 (3): 430439430-439.
IntroductionAlthough infrequently recorded in electronic health records (EHRs), measures of SES are essential to describe health inequalities and account for confounding in epidemiologic research. Medical Assistance (i.e., Medicaid) is often used as a surrogate for SES, but correspondence between conventional SES and Medical Assistance has been insufficiently studied.MethodsGeisinger Clinic EHR data from 2001 to 2014 and a 2014 questionnaire were used to create six SES measures: EHR-derived Medical Assistance and proportion of time under observation on Medical Assistance; educational attainment, income, and marital status; and area-level poverty. Analyzed in 2016-2017, associations of SES measures with obesity, hypertension, type 2 diabetes, chronic rhinosinusitis, fatigue, and migraine headache were assessed using weighted age- and sex-adjusted logistic regression.ResultsAmong 5,550 participants (interquartile range, 39.6-57.5 years, 65.9% female), 83% never used Medical Assistance. All SES measures were correlated (Spearman's p≤0.4). Medical Assistance was significantly associated with all six health outcomes in adjusted models. For example, the OR for prevalent type 2 diabetes associated with Medical Assistance was 1.7 (95% CI=1.3, 2.2); the OR for high school versus college graduates was 1.7 (95% CI=1.2, 2.5). Medical Assistance was an imperfect proxy for SES: associations between conventional SES measures and health were attenuated <20% after adjustment for Medical Assistance.ConclusionsBecause systematically collected SES measures are rarely available in EHRs and are unlikely to appear soon, researchers can use EHR-based Medical Assistance to describe inequalities. As SES has many domains, researchers who use Medical Assistance to evaluate the association of SES with health should expect substantial unmeasured confounding.Copyright © 2018 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.