• Am J Prev Med · Dec 2019

    Predicting Opioid Overdose Deaths Using Prescription Drug Monitoring Program Data.

    • Lindsey M Ferris, Brendan Saloner, Noa Krawczyk, Kristin E Schneider, Molly P Jarman, Kate Jackson, B Casey Lyons, Matthew D Eisenberg, Tom M Richards, Klaus W Lemke, and Jonathan P Weiner.
    • Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Chesapeake Regional Information System for our Patients, Baltimore, Maryland.
    • Am J Prev Med. 2019 Dec 1; 57 (6): e211-e217.

    IntroductionPrescription Drug Monitoring Program data can provide insights into a patient's likelihood of an opioid overdose, yet clinicians and public health officials lack indicators to identify individuals at highest risk accurately. A predictive model was developed and validated using Prescription Drug Monitoring Program prescription histories to identify those at risk for fatal overdose because of any opioid or illicit opioids.MethodsFrom December 2018 to July 2019, a retrospective cohort analysis was performed on Maryland residents aged 18-80 years with a filled opioid prescription (n=565,175) from January to June 2016. Fatal opioid overdoses were identified from the Office of the Chief Medical Examiner and were linked at the person-level with Prescription Drug Monitoring Program data. Split-half technique was used to develop and validate a multivariate logistic regression with a 6-month lookback period and assessed model calibration and discrimination.ResultsPredictors of any opioid-related fatal overdose included male sex, age 65-80 years, Medicaid, Medicare, 1 or more long-acting opioid fills, 1 or more buprenorphine fills, 2 to 3 and 4 or more short-acting schedule II opioid fills, opioid days' supply ≥91 days, average morphine milligram equivalent daily dose, 2 or more benzodiazepine fills, and 1 or more muscle relaxant fills. Model discrimination for the validation cohort was good (area under the curve: any, 0.81; illicit, 0.77).ConclusionsA model for predicting fatal opioid overdoses was developed using Prescription Drug Monitoring Program data. Given the recent national epidemic of deaths involving heroin and fentanyl, it is noteworthy that the model performed equally well in identifying those at risk for overdose deaths from both illicit and prescription opioids.Copyright © 2019 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…