• Neuromodulation · Apr 2010

    Gastric electrical stimulation with long pulses in humans and animals: can data obtained in animals be replicated in humans?

    • Geng-Qing Song, Yong Lei, Xiaohong Xu, and Jiande D Z Chen.
    • Veterans Research Foundation, VA Medical Center, Oklahoma City, OK, USA; and Division of Gastroenterology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
    • Neuromodulation. 2010 Apr 1;13(2):87-92.

    Aims  The aim of this study was to investigate and compare effective parameters for gastric electrical stimulation (GES) to modulate gastric muscle functions in different species.Methods  Four species: Pigs, dogs, rats, and mice implanted with two pairs of electrodes on the serosal surface of the stomach were studied, respectively. Experiment 1 was designed to entrain/pace gastric slow waves and included a series of 5-min periods with long-pulse GES of different pulse widths and frequencies. Experiment 2 was designed to induce gastric dysrhythmia with long-pulse GES of different frequencies. Gastric slow waves were recorded during the entire experiment.Results  1) The minimum pulse width for GES to completely entrain the slow waves was similar (100-400 msec) in all four species. 2) With fixed amplitude (4 mA) and pulse width (400 msec), the highest frequency at which slow waves could be paced was similar (about 10-60% higher than the intrinsic slow wave frequency) in all species. 3) With fixed pulse width of 400 msec and amplitude of 6 mA, GES with nine to 18 cycles per min (cpm) was able to induce dysrhythmia in dogs. In addition, there was no significant difference among these frequencies of 9-18 cpm. 4) GES with 400 msec, 6 mA, and 9 cpm was able to induce dysrhythmia in all species. These effective GES parameters in results 1-4 were similar to those used in humans in the literature.Conclusions  There is no significant difference in stimulation parameters when GES is applied to alter gastric slow waves in different animal models. Furthermore, the effective parameters for GES to alter slow waves are similar between the humans and various animal models. These findings suggest that stimulation parameters obtained from animal studies are applicable in humans.© 2009 International Neuromodulation Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.