-
- Paul Campbell, Martyn Lewis, Ying Chen, Rosie J Lacey, Gillian Rowlands, and Joanne Protheroe.
- Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele University, Staffordshire, ST5 5BG, UK. p.campbell@keele.ac.uk.
- Bmc Fam Pract. 2019 Jul 18; 20 (1): 101.
BackgroundPeople with low health literacy (HL) are at increased risk of poor health outcomes, and receive less benefit from healthcare services. However, healthcare practitioners can effectively adapt healthcare information if they are aware of their patients' HL. Measurements are available to assess HL levels but may not be practical for use within primary care settings. New alternative methods based on demographic indicators have been successfully developed, and we aim to test if such methodology can be applied to routinely collected consultation records.MethodsSecondary analysis was carried out from a recently completed prospective cohort study that investigated a primary care population who had consulted about a musculoskeletal pain problem. Participants completed questionnaires (assessing general health, HL, pain, and demographic information) at baseline and 6 months, with linked data from the participants' consultation records. The Single Item Literacy Screener was used as a benchmark for HL. We tested the performance of an existing demographic assessment of HL, whether this could be refined/improved further (using questionnaire data), and then test the application in primary care consultation data. Tests included accuracy, sensitivity, specificity, and area under the curve (AUC). Finally, the completed model was tested prospectively using logistic regression producing odds ratios (OR) in the prediction of poor health outcomes (physical health and pain intensity).ResultsIn total 1501 participants were included within the analysis and 16.1% were categorised as having low HL. Tests for the existing demographic assessment showed poor performance (AUC 0.52), refinement using additional components derived from the questionnaire improved the model (AUC 0.69), and the final model using data only from consultation data remained improved (AUC 0.64). Tests of this final consultation model in the prediction of outcomes showed those with low HL were 5 times more likely to report poor health (OR 5.1) and almost 4 times more likely to report higher pain intensity (OR 3.9).ConclusionsThis study has shown the feasibility of the assessment of HL using primary care consultation data, and that people indicated as having low HL have poorer health outcomes. Further refinement is now required to increase the accuracy of this method.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.