-
- Levi N Bonnell, Benjamin Littenberg, Safwan R Wshah, and Gail L Rose.
- From University of Vermont College of Medicine, Burlington (LNB, BL, GLR); University of Vermont, College of Engineering and Mathematical Sciences, Burlington (SRW). levi.bonnell@med.uvm.edu.
- J Am Board Fam Med. 2020 May 1; 33 (3): 397-406.
IntroductionUnhealthy drinking is prevalent in the United States, and yet it is underidentified and undertreated. Identifying unhealthy drinkers can be time-consuming and uncomfortable for primary care providers. An automated rule for identification would focus attention on patients most likely to need care and, therefore, increase efficiency and effectiveness. The objective of this study was to build a clinical prediction tool for unhealthy drinking based on routinely available demographic and laboratory data.MethodsWe obtained 38 demographic and laboratory variables from the National Health and Nutrition Examination Survey (1999 to 2016) on 43,545 nationally representative adults who had information on alcohol use available as a reference standard. Logistic regression, support vector machines, k-nearest neighbor, neural networks, decision trees, and random forests were used to build clinical prediction models. The model with the largest area under the receiver operator curve was selected to build the prediction tool.ResultsA random forest model with 15 variables produced the largest area under the receiver operator curve (0.78) in the test set. The most influential predictors were age, current smoker, hemoglobin, sex, and high-density lipoprotein. The optimum operating point had a sensitivity of 0.50, specificity of 0.86, positive predictive value of 0.55, and negative predictive value of 0.83. Application of the tool resulted in a much smaller target sample (75% reduced).ConclusionUsing commonly available data, a decision tool can identify a subset of patients who seem to warrant clinical attention for unhealthy drinking, potentially increasing the efficiency and reach of screening.© Copyright 2020 by the American Board of Family Medicine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.