Omics : a journal of integrative biology
-
Artificial intelligence (AI) is one of the key drivers of digital health. Digital health and AI applications in medicine and biology are emerging worldwide, not only in resource-rich but also resource-limited regions. AI predates to the mid-20th century, but the current wave of AI builds in part on machine learning (ML), big data, and algorithms that can learn from massive amounts of online user data from patients or healthy persons. ⋯ We examine and share here the lessons learned in current attempts to implement AI and digital health in CHD for precision risk prediction and diagnosis in resource-limited settings. These top 10 lessons on AI and digital health summarized in this expert review are relevant broadly beyond CHD in cardiology and medical innovations. As with AI itself that calls for systems approaches to data capture, analysis, and interpretation, both developed and developing countries can usefully learn from their respective experiences as digital health continues to evolve worldwide.
-
Artificial intelligence, machine learning, health care robots, and algorithms for clinical decision-making are currently being sought after in diverse fields of clinical medicine and bioengineering. The field of personalized medicine stands to benefit from new technologies so as to harness the omics big data, for example, to individualize and accelerate cancer diagnostics and therapeutics in particular. In this overarching context, breast cancer is one of the most common malignancies worldwide with multiple underlying molecular etiologies and each subtype displaying diverse clinical outcomes. ⋯ This expert review describes and examines, first, the SVM models employed to forecast breast cancer subtypes using diverse systems science data, including transcriptomics, epigenetics, proteomics, and radiomics, as well as biological pathway, clinical, pathological, and biochemical data. Then, we compare the performance of the present SVM and other diagnostic and therapeutic prediction models across the data types. We conclude by emphasizing that data integration is a critical bottleneck in systems science, cancer research and development, and health care innovation and that SVM and machine learning approaches offer new solutions and ways forward in biomedical, bioengineering, and clinical applications.
-
Historically, the term "artificial intelligence" dates to 1956 when it was first used in a conference at Dartmouth College in the US. Since then, the development of artificial intelligence has in part been shaped by the field of neuroscience. By understanding the human brain, scientists have attempted to build new intelligent machines capable of performing complex tasks akin to humans. ⋯ Examples of AI applications include digital health, diagnosis of diseases in newborns, remote monitoring of health by smart devices, real-time Big Data analytics for prompt diagnosis of heart attacks, and facial analysis software with consequences on civil liberties. While we underscore the need for integration of AI and HI, we note that AI technology does not have to replace medical specialists or scientists and rather, is in need of such expert HI. Altogether, AI and HI offer synergy for responsible innovation and veritable prospects for improving health care from prevention to diagnosis to therapeutics while unintended consequences of automation emergent from AI and algorithms should be borne in mind on scientific cultures, work force, and society at large.