Cardiovascular engineering
-
Comparative Study
Afterload assessment with or without central venous pressure: a preliminary clinical comparison.
A clinical comparison, of two methods of afterload assessment, has been made. The first method, systemic vascular resistance index (SVR(i)), is based upon the traditional formula for afterload which utilizes central venous pressure (CVP), as well as cardiac index (C(i)), and mean arterial blood pressure (MAP). The second method, total systemic vascular resistance index (TSVR(i)), also uses MAP and C(i). ⋯ Furthermore, there was also a high degree of correlation (ranging from 94 to 100%) noted between the hour-to-hour change in SVR(i) with the hour-to-hour change in TSVR(i) (P < 0.0001). The results, of this pilot study, support the premise that the use of CVP may not always be necessary for afterload evaluation in the clinical setting. Minimally-invasive means of measuring both C(i) and MAP, without CVP, may be adequate for use in assessing afterload.
-
Our institution is in development of a low frequency, non-invasive Diastolic Timed Vibrator (DTV) for use in emergency treatment of ST Elevation Myocardial Infarction (STEMI). It is preferable to avoid vibration emissions during the IsoVolumetric Contraction Period (IVCP) and at least the majority of mechanical systole thereafter, as systolic vibration may cause a negative inotropic effect in the ischemic heart. Furthermore diastolic vibration should preferably include the IsoVolumetric Relaxation Period (IVRP) which has been shown in clinical studies to improve cardiac performance and enhance coronary flow. ⋯ A DTV should ideally be able to stop vibrating on or before the peak of the first dominant deflection of a QRS complex, and begin vibrating near the peak of the T wave. Given early detection of ventricular depolarization can occur 10-20 ms prior to R wave peak, it is proposed that a DTV should preferably be able to stop vibrating within 10 ms of a triggered stop command. Onset of vibration during peak of T wave could be approximated by a rate adapted Q-T interval regression equation, and then fine tuned by manual adjustment during therapy.