Neuro-Signals
-
Recent experimental and theoretical data indicate that the functional capabilities of axons with specialized structures are much more diverse than traditionally thought. However, few observations were concerned with the main axons without arborization. In the present study, electrical stimulation of the saphenous nerve at different frequencies (2, 5, 10, 20 Hz) was used to test the role of activity-dependent effects on the pattern of action potentials that propagate along individual unmyelinated fibers (C fibers) within the trunk of the saphenous nerve in rabbits. ⋯ A novel fluctuation in interspike intervals was always observed immediately before the occurrence of the failures, implying that the fluctuation of conduction velocity is correlated with imminent failures. Both the 4-aminopyridine-sensitive potassium current and hyperpolarization-activated cation current were recognized to be involved in the regulation of conduction failure patterns. The results confirmed, at least in part, the existence of conduction failures in the main axon of C fibers, suggesting that axonal operations may also be determinants for adaptation phenomenon and information processing in peripheral nervous system.
-
Akt has been implicated in pro-survival and anti-apoptotic activities in many cell types, including dorsal root ganglion (DRG) and spinal motor neurons. In this immunohistochemical study we have monitored phosphorylated Akt (p-Akt) levels in adult mouse DRGs and spinal cord following unilateral peripheral sciatic nerve transection (axotomy) or carrageenan-induced inflammation. In control animals around half of the lumbar DRG neuron profiles (NPs), mainly small and medium-sized ones, were p-Akt immunoreactive (IR), and of these around 50% expressed calcitonin gene-related peptide and/or isolectin IB4. ⋯ Carrageenan-induced peripheral inflammation increased the number of p-Akt-IR NPs after 1 h. Both axotomy and inflammation caused a clear increase in nuclear p-Akt-like immunoreactivity in DRG neurons. Our findings support a role for Akt as a key signaling molecule in sensory neurons and spinal cord after peripheral injury.