Biomechanics and modeling in mechanobiology
-
Biomech Model Mechanobiol · Jun 2020
Embedded axonal fiber tracts improve finite element model predictions of traumatic brain injury.
With the growing rate of traumatic brain injury (TBI), there is an increasing interest in validated tools to predict and prevent brain injuries. Finite element models (FEM) are valuable tools to estimate tissue responses, predict probability of TBI, and guide the development of safety equipment. In this study, we developed and validated an anisotropic pig brain multi-scale FEM by explicitly embedding the axonal tract structures and utilized the model to simulate experimental TBI in piglets undergoing dynamic head rotations. ⋯ The thresholds compare favorably with tissue tolerances found in in-vitro/in-vivo measurements in the literature. In addition, the damaged volume fractions (DVF) predicted using the axonal-based metrics, especially MASxSR (DVF = 0.05-4.5%), were closer to the actual DVF obtained from histopathology (AIV = 0.02-1.65%) in comparison with the DVF predicted using the brain-related metrics (DVF = 0.11-41.2%). The methods and the results from this study can be used to improve model prediction of TBI in humans.