Neuromolecular medicine
-
Neuromolecular medicine · Jun 2020
Harpagophytum procumbens Extract Ameliorates Allodynia and Modulates Oxidative and Antioxidant Stress Pathways in a Rat Model of Spinal Cord Injury.
Spinal cord injury (SCI) is a deliberating disorder with impairments in locomotor deficits and incapacitating sensory abnormalities. Harpagophytum procumbens (Hp) is a botanical widely used for treating inflammation and pain related to various inflammatory and musculoskeletal conditions. Using a modified rodent contusion model of SCI, we explored the effects of this botanical on locomotor function and responses to mechanical stimuli, and examined possible neurochemical changes associated with SCI-induced allodynia. ⋯ SCI also enhanced antioxidant heme oxygenase-1 (HO-1) expression. Concurrent studies of cultured murine BV-2 microglial cells revealed that Hp suppressed oxidative/nitrosative stress and inflammatory responses, including production of nitric oxide and reactive oxygen species, phosphorylation of cytosolic phospholipases A2, and upregulation of the antioxidative stress pathway involving the nuclear factor erythroid 2-related factor 2 and HO-1. These results support the use of Hp for management of allodynia by providing resilience against the neuroinflammation and pain associated with SCI and other neuropathological conditions.
-
Neuromolecular medicine · Sep 2019
Tetramethylpyrazine Nitrone Reduces Oxidative Stress to Alleviate Cerebral Vasospasm in Experimental Subarachnoid Hemorrhage Models.
Cerebral vasospasm is one of the deleterious complications after subarachnoid hemorrhage (SAH), leading to delayed cerebral ischemia and permanent neurological deficits or even death. Free radicals and oxidative stress are considered as crucial causes contributing to cerebral vasospasm and brain damage after SAH. Tetramethylpyrazine nitrone (TBN), a derivative of the clinically used anti-stroke drug tetramethylpyrazine armed with a powerful free radical scavenging nitrone moiety, has been reported to prevent brain damage from ischemic stroke. ⋯ Additionally, TBN alleviated the contraction of rat basilar artery rings induced by H2O2 ex vivo. In conclusion, TBN ameliorated SAH-induced cerebral vasospasm and neuronal damage. These effects of TBN may be attributed to its anti-oxidative stress effect and up-regulation of Nrf2/HO-1.
-
Neuromolecular medicine · Jun 2018
BDNF/TrkB Pathway Mediates the Antidepressant-Like Role of H2S in CUMS-Exposed Rats by Inhibition of Hippocampal ER Stress.
Our previous works have shown that hydrogen sulfide (H2S) significantly attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors and hippocampal endoplasmic reticulum (ER) stress. Brain-derived neurotrophic factor (BDNF) generates an antidepressant-like effect by its receptor tyrosine protein kinase B (TrkB). We have previously found that H2S upregulates the expressions of BDNF and p-TrkB in the hippocampus of CUMS-exposed rats. ⋯ Similarly, K252a reversed the protective effect of NaHS against CUMS-induced hippocampal ER stress, as evidenced by increases in the levels of ER stress-related proteins, glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein and cleaved caspase-12. Taken together, our results suggest that BDNF/TrkB pathway plays an important mediatory role in the antidepressant-like action of H2S in CUMS-exposed rats, which is by suppression of hippocampal ER stress. These data provide a novel mechanism underlying the protection of H2S against CUMS-induced depressive-like behaviors.
-
Neuromolecular medicine · Jun 2015
The Domain II S4-S5 Linker in Nav1.9: A Missense Mutation Enhances Activation, Impairs Fast Inactivation, and Produces Human Painful Neuropathy.
Painful small fiber neuropathy is a challenging medical condition with no effective treatment. Non-genetic causes can be identified in one half of the subjects. Gain-of-function variants of sodium channels Nav1.7 and Nav1.8 have recently been associated with painful small fiber neuropathy. ⋯ Voltage-clamp analysis showed that the mutation hyperpolarizes (-10.1 mV) channel activation, depolarizes (+6.3 mV) steady-state fast inactivation, slows deactivation, and enhances ramp responses compared with wild-type Nav1.9 channels. Current-clamp analysis showed that the G699R mutant channels render dorsal root ganglion neurons hyperexcitable, via depolarized resting membrane potential, reduced current threshold and increased evoked firing. These observations show that the domain II S4-S5 linker plays an important role in the gating of Nav1.9 and demonstrates that a mutation in this linker is linked to a common pain disorder.
-
Neuromolecular medicine · Dec 2014
Phosphoinositide 3-kinase γ affects LPS-induced disturbance of blood-brain barrier via lipid kinase-independent control of cAMP in microglial cells.
The breakdown of the blood-brain barrier (BBB) is a key event in the development of sepsis-induced brain damage. BBB opening allows blood-born immune cells to enter the CNS to provoke a neuroinflammatory response. Abnormal expression and activation of matrix metalloproteinases (MMP) was shown to contribute to BBB opening. ⋯ Unexpectedly, microglia expressing lipid kinase-deficient mutant PI3Kγ exhibited similar MMP regulation as wild-type cells. Our data suggest kinase-independent control of cAMP phosphodiesterase activity by PI3Kγ as a crucial mediator of microglial cell activation, MMP expression and subsequent BBB deterioration. The results identify the suppressive effect of PI3Kγ on cAMP as a critical mediator of immune cell functions.