Clinical physiology and functional imaging
-
Clin Physiol Funct Imaging · May 2015
Comparative StudyExtra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between INVOS-4100 and NIRO-200NX.
Frontal lobe oxygenation (Sc O2 ) is assessed by spatially resolved near-infrared spectroscopy (SR-NIRS) although it seems influenced by extra-cerebral oxygenation. We aimed to quantify the impact of extra-cerebral oxygenation on two SR-NIRS derived Sc O2 . ⋯ For all interventions, 35% of the INVOS-4100 signal reflected extra-cerebral oxygenation while, on the other hand, NIRO-200NX did not follow changes in a calculated estimate of cerebral capillary oxygenation. Thus, the NIRO-200NX and INVOS-4100 do not provide for unbiased evaluation of the cerebral signal.
-
Clin Physiol Funct Imaging · May 2015
Comparative StudyInfluence of skin blood flow and source-detector distance on near-infrared spectroscopy-determined cerebral oxygenation in humans.
Most near-infrared spectroscopy (NIRS) apparatus fails to isolate cerebral oxygenation from an extracranial contribution although they use different source-detector distances. Nevertheless, the effect of different source-detector distances and change in extracranial blood flow on the NIRS signal has not been identified in humans. This study evaluated the extracranial contribution, as indicated by forehead skin blood flow (SkBF) to changes in the NIRS-determined cerebral oxyhaemoglobin concentration (O2 Hb) by use of a custom-made multidistance probe. ⋯ Also, O2 Hb gradually decreased with increasing applied pressure (P<0·05), and the decrease was related to that in SkBF (r = 0·737, P<0·01) independent of the NIRS source to detector distance. These findings suggest that the NIRS-determined cerebral oxyhaemoglobin is affected by change in extracranial blood flow independent of the source-detector distance from 15 to 30 mm. Therefore, new algorithms need to be developed for unbiased NIRS detection of cerebral oxygenation.