Lancet neurology
-
Parkinson's disease is associated with an increased incidence of cognitive impairment and dementia. Predicting who is at risk of cognitive decline early in the disease course has implications for clinical prognosis and for stratification of participants in clinical trials. We assessed the use of clinical information and biomarkers as predictive factors for cognitive decline in patients with newly diagnosed Parkinson's disease. ⋯ None.
-
Randomized Controlled Trial Multicenter Study
Safety and effectiveness of hormonal treatment versus hormonal treatment with vigabatrin for infantile spasms (ICISS): a randomised, multicentre, open-label trial.
Infantile spasms constitutes a severe infantile epilepsy syndrome that is difficult to treat and has a high morbidity. Hormonal therapies or vigabatrin are the most commonly used treatments. We aimed to assess whether combining the treatments would be more effective than hormonal therapy alone. ⋯ The Castang Foundation, Bath Unit for Research in Paediatrics, National Institute of Health Research, the Royal United Hospitals Bath NHS Foundation Trust, the BRONNER-BENDUNG Stifung/Gernsbach, and University Children's Hospital Zurich.
-
Migraine is two to three times more prevalent in women than men, and women report a longer attack duration, increased risk of headache recurrence, greater disability, and a longer period of time required to recover. Conditions recognised to be comorbid with migraine include asthma, anxiety, depression, and other chronic pain conditions, and these comorbidities add to the amount of disability in both sexes. ⋯ There is evidence implicating the role of female sex hormones as a major factor in determining migraine risk and characteristics, which accounts for sex differences, but there is also evidence to support underlying genetic variance. Although migraine is often recognised in women, it is underdiagnosed in men, resulting in suboptimal management and less participation of men in clinical trials.
-
Inherited diseases caused by unstable repeated DNA sequences are rare, but together represent a substantial cause of morbidity. Trinucleotide repeat disorders are severe, usually life-shortening, neurological disorders caused by nucleotide expansions, and most have no disease-modifying treatments. Longer repeat expansions are associated with genetic anticipation (ie, earlier disease onset in successive generations), although the differences in age at onset are not entirely accounted for by repeat length. Such phenotypic variation within disorders implies the existence of additional modifying factors in pathways that can potentially be modulated to treat disease. ⋯ A genome-wide association study detected genetic modifiers of age at onset in Huntington's disease. Similar findings were seen in the spinocerebellar ataxias, indicating an association between DNA damage-response and repair pathways and the age at onset of disease. These studies also suggest that a common genetic mechanism modulates age at onset across polyglutamine diseases and could extend to other repeat expansion disorders. Genetic defects in DNA repair underlie other neurodegenerative disorders (eg, ataxia-telangiectasia), and DNA double-strand breaks are crucial to the modulation of early gene expression, which provides a mechanistic link between DNA repair and neurodegeneration. Mismatch and base-excision repair are important in the somatic expansion of repeated sequences in mouse models of trinucleotide repeat disorders, and somatic expansion of the expanded CAG tract in HTT correlates with age at onset of Huntington's disease and other trinucleotide repeat disorders. WHERE NEXT?: To understand the common genetic architecture of trinucleotide repeat disorders and any further genetic susceptibilities in individual disorders, genetic analysis with increased numbers of variants and sample sizes is needed, followed by sequencing approaches to define the phenotype-modifying variants. The findings must then be translated into cell biology analyses to elucidate the mechanisms through which the genetic variants operate. Genes that have roles in the DNA damage response could underpin a common DNA repeat-based mechanism and provide new therapeutic targets (and hence therapeutics) in multiple trinucleotide repeat disorders.