Respiratory physiology & neurobiology
-
Respir Physiol Neurobiol · Jan 2004
Comparative StudyRole of L-glutamate in the locus coeruleus of rats in hypoxia-induced hyperventilation and anapyrexia.
Locus coeruleus (LC) is a noradrenergic nucleus in the pons which has been reported to play an inhibitory role in the ventilatory response to hypoxia. Since LC contains glutamatergic receptors and L-glutamate is known to participate in the ventilatory and thermoregulatory responses to hypoxia, the effects of kynurenic acid (KYN, a glutamatergic receptor antagonist) microinjected into the LC in the hypoxic hyperventilation and anapyrexia (a regulated drop in body temperature [Tb]) were examined. Ventilation (V) and Tb were measured before and after a microinjection of KYN (10 nmol/0.1 microl) into the LC, followed by hypoxia. ⋯ KYN injection caused an increase in the ventilatory response, acting on tidal volume (Vt), but did not affect the anapyrexic response to hypoxia. These data suggest that L-glutamate in the LC is an excitatory neurotransmitter that activates an inhibitory pathway to reduce the hypoxic ventilatory response, similarly to the data reported for rostral ventrolateral medulla (VLM). The role of L-glutamate into the LC and VLM opposes its effect on other nuclei such as the nucleus of the solitary tract and ventromedullary surface, where the neurotransmitter participates in an excitatory pathway of the ventilatory response.
-
Respir Physiol Neurobiol · Jan 2004
Comparative StudyOral airway resistance during wakefulness in eucapnic and hypercapnic sleep apnea syndrome.
The purpose of this study was to evaluate whether there was an abnormal increase of upper airway resistance in the sitting and supine positions in hypercapnic obstructive sleep apnea syndrome (OSAS) patients compared with eucapnic OSAS or normal controls as measured by impulse oscillometry (IOS) while awake. Twenty subjects without OSAS served as controls (group I), and 20 patients with moderate or severe eucapnic OSAS (group II) and another eight hypercapnic severe OSAS patients (group III) were studied. Group II was further divided into two subgroups. ⋯ In contrast, in group III patients, there was a high Zrs in both the sitting and supine positions. In conclusion, upper airway resistance was increased both sitting and supine in the hypercapnic OSAS patients; this would presumably increase the work of breathing and might explain why these subjects were hypercapnic while awake, while eucapnic OSAS patients and normal controls were not. Secondly, the increased upper airway resistance in the supine position in the eucapnic OSAS patients may contribute to their OSAS.