Respiratory physiology & neurobiology
-
Respir Physiol Neurobiol · Nov 2014
Effects of short-term propofol and dexmedetomidine on pulmonary morphofunction and biological markers in experimental mild acute lung injury.
We evaluated whether the short-term use of dexmedetomidine and propofol may attenuate inflammatory response and improve lung morphofunction in experimental acute lung injury (ALI). Thirty-six Wistar rats were randomly divided into five groups. Control (C) and ALI animals received sterile saline solution and Escherichia coli lipopolysaccharide by intraperitoneal injection respectively. ⋯ Dexmedetomidine improved oxygenation, but did not modify lung mechanics or histology. Propofol was associated with lower IL (interleukin)-6 and IL-1β expression, whereas dexmedetomidine led to reduced inducible nitric oxide (iNOS) and increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression in lung tissue compared to thiopental sodium. In conclusion, in this model of mild ALI, short-term use of dexmedetomidine and propofol led to different functional effects and activation of biological markers associated with pulmonary inflammation.
-
Respir Physiol Neurobiol · Nov 2014
Comparative StudyPhysiologic comparison of neurally adjusted ventilator assist, proportional assist and pressure support ventilation in critically ill patients.
To compare, in a group of difficult to wean critically ill patients, the short-term effects of neurally adjusted ventilator assist (NAVA), proportional assist (PAV+) and pressure support (PSV) ventilation on patient-ventilator interaction. ⋯ Compared to PSV, proportional modes favored tidal volume variability. The weak ∫EAdi-PTPdi linear relationship during NAVA and poor triggering function during PAV+ may limit the effectiveness of these modes to proportionally assist the inspiratory effort.
-
Respir Physiol Neurobiol · Nov 2014
Endomicroscopic analysis of time- and pressure-dependent area of subpleural alveoli in mechanically ventilated rats.
We investigated the effects of recruitment maneuvers on subpleural alveolar area in healthy rats. 36 mechanically ventilated rats were allocated to either ZEEP-group or PEEP - 5cmH2O - group. The subpleural alveoli were observed using a transthoracal endoscopic imaging technique. Two consecutive low-flow maneuvers up to 30cmH2O peak pressure each were performed, interrupted by 5s plateau phases at four different pressure levels. ⋯ During the plateau phases there was a slight increase in alveolar area. After the maneuvers, compliance increased by 30% in ZEEP group and 20% in PEEP group. We conclude that the volume insufflated by the low-flow recruitment maneuver is distributed to deeper but not to subpleural lung regions.