Technology in cancer research & treatment
-
Technol. Cancer Res. Treat. · Apr 2013
Comparative StudyA comparative analysis of radiobiological models for cell surviving fractions at high doses.
For many years the linear-quadratic (LQ) model has been widely used to describe the effects of total dose and dose per fraction at low-to-intermediate doses in conventional fractionated radiotherapy. Recent advances in stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) have increased the interest in finding a reliable cell survival model, which will be accurate at high doses, as well. Different models have been proposed for improving descriptions of high dose survival responses, such as the Universal Survival Curve (USC), the Kavanagh-Newman (KN) and several generalizations of the LQ model, e.g. the Linear-Quadratic-Linear (LQL) model and the Pade Linear Quadratic (PLQ) model. ⋯ This is an important improvement over the LQ model which predicts a Gaussian at high doses. Overall and for the highlighted reasons, it was concluded that the PLQ, USC and LQL models are theoretically well-founded. They could prove useful compared to the other proposed radiobiological models in clinical applications for obtaining uniformly accurate cell surviving fractions encountered in stereotactic high-dose radiotherapy as well as at medium and low doses.