Drug safety
-
Patients at the end of life often receive numerous medications for symptom management. In contrast to all other clinical situations, the aim of pharmacotherapy is strictly focused on quality of life. ⋯ In the context of end-of-life care, the clinical relevance of DDIs differs from other clinical settings. Most DDIs can be prevented if the prescribing physician considers a few therapeutic principles. Specifically, this concerns the awareness of futile and high-risk medications, as well as rational alternatives.
-
After market approval, new serious safety issues are regularly identified for drugs that lead to regulatory action to inform healthcare professionals. However, the effectiveness of these safety-related regulatory actions is under question. We currently lack a comprehensive overview of the effects of these drug safety warnings on clinical practice to resolve the debate about their effectiveness. ⋯ There is a clear need for further research with appropriate study designs and statistical analyses, with more attention to confounding factors such as media coverage, to understand the impact of safety-related regulatory action.
-
The US FDA Amendments Act of 2007 was signed into law on 27 September 2007. A provision of this law granted the FDA new powers to enhance drug safety by requiring the pharmaceutical industry to develop Risk Evaluation and Mitigation Strategies (REMS). REMS are deemed necessary when a question exists as to whether the benefits of a drug outweigh its risks. ⋯ For illustrative purposes, we chose the drug romiplostim (Nplate®) to present an REMS, as all components were utilized to help assuage risks associated with the drug. Romiplostim is an FDA-approved drug used to treat thrombocytopenia in patients with chronic immune (idiopathic) thrombocytopenic purpura that has a significant adverse safety profile based on the risk of changes in bone marrow reticulin formation and bone marrow fibroses, and other associated risks. This review of current REMS policy is intended to provide the prescriber with a better understanding of current modalities in FDA-mandated drug safety programmes, which will impact day-to-day healthcare provider practices.
-
Older adults are more susceptible to the prevalence of therapeutic failure and adverse drug reactions (ADRs). Recent advances in genomic research have shed light on the crucial role of genetic variants, mainly involving genes encoding drug-metabolizing enzymes, drug transporters and genes responsible for a compound's mechanism of action, in driving different treatment responses among individuals, in terms of therapeutic efficacy and safety. The interindividual variations of these genes may account for the differences observed in drug efficacy and the appearance of ADRs in elderly people. ⋯ A Pubmed search was performed (years 1999-2012) using the following two search strategies: ('pharmacogenomic' OR 'pharmacogenetic ') AND ('geriatric' or 'elderly ') AND 'adverse drug reactions'; [gene name] AND ('geriatric' or 'elderly ') AND 'adverse drug reactions', in which the gene names were those contained in the Table of Pharmacogenomic Biomarkers in Drug Labels published online by the US Food and Drug Administration ( http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm ). Reference lists of included original articles and relevant review articles were also screened. The search was limited to studies published in the English language.
-
The use of data mining has increased among regulators and pharmaceutical companies. The incremental value of data mining as an adjunct to traditional pharmacovigilance methods has yet to be demonstrated. Specifically, the utility in identifying new safety signals and the resources required to do so have not been elucidated. ⋯ The number of DRPECs identified for each drug approximately correlated with the number of unique PTs in the database. Over one-half of DRPECs were either labelled as per the company's reference safety information (RSI) or were under review after identification by traditional pharmacovigilance activities, suggesting that for marketed products these methods do identify adverse events detected by traditional pharmacovigilance methods. Approximately three-quarters of the 861 DRPECs identified were closed without case review after triage. Of the approximately one-quarter of DRPECs that required formal case review, seven resulted in an addition to the RSI for the relevant products. While this pilot does not allow us to comment on the utility of routine data mining for all products, it is significant that several new safety concepts were identified through this prospective exercise.