Neurocritical care
-
Our goal was to perform a systematic review of the literature on the use of ketamine in traumatic brain injury (TBI) and its effects on intracranial pressure (ICP). All articles from MEDLINE, BIOSIS, EMBASE, Global Health, HealthStar, Scopus, Cochrane Library, the International Clinical Trials Registry Platform (inception to November 2013), reference lists of relevant articles, and gray literature were searched. Two reviewers independently identified all manuscripts pertaining to the administration of ketamine in human TBI patients that recorded effects on ICP. ⋯ No significant adverse events related to ketamine were recorded in any of the studies. Outcome data were poorly documented. There currently exists Oxford level 2b, GRADE C evidence to support that ketamine does not increase ICP in severe TBI patients that are sedated and ventilated, and in fact may lower it in selected cases.
-
Our goal was to perform a systematic review of the literature on the use of ketamine in traumatic brain injury (TBI) and its effects on intracranial pressure (ICP). All articles from MEDLINE, BIOSIS, EMBASE, Global Health, HealthStar, Scopus, Cochrane Library, the International Clinical Trials Registry Platform (inception to November 2013), reference lists of relevant articles, and gray literature were searched. Two reviewers independently identified all manuscripts pertaining to the administration of ketamine in human TBI patients that recorded effects on ICP. ⋯ No significant adverse events related to ketamine were recorded in any of the studies. Outcome data were poorly documented. There currently exists Oxford level 2b, GRADE C evidence to support that ketamine does not increase ICP in severe TBI patients that are sedated and ventilated, and in fact may lower it in selected cases.
-
Review
Cerebral Microdialysis in Traumatic Brain Injury and Subarachnoid Hemorrhage: State of the Art.
Cerebral microdialysis (CMD) is a laboratory tool that provides on-line analysis of brain biochemistry via a thin, fenestrated, double-lumen dialysis catheter that is inserted into the interstitium of the brain. A solute is slowly infused into the catheter at a constant velocity. ⋯ The collected substances provide insight into the neurochemical features of secondary injury following traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) and valuable information about changes in brain metabolism within a short time frame. In this review, the authors detail the CMD technique and its associated markers and then describe pertinent findings from the literature about the clinical application of CMD in TBI and SAH.