IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · Feb 1992
Simulation of multipolar fiber selective neural stimulation using intrafascicular electrodes.
A realistic, quantitative model is presented for the excitation of myelinated nerve fibers by intrafascicular electrodes. It predicts the stimulatory regions of any configuration of any number of electrodes, positioned anywhere inside the fascicle. The model has two parts. ⋯ With realistic parameters, the model is applied to two cases: monopolar stimulation by a single cathode and stimulation by a specific tripolar configuration. It is shown that tripolar stimulation has the better spatial selectivity. Also tripolar stimulation is less sensitive to the conductivity of the medium surrounding the nerve and yields a more natural recruitment order.