IEEE transactions on bio-medical engineering
-
In electrical impedance tomography, we inject currents and measure voltages to estimate an object's resistivity distribution. The electrode configuration affects measured voltage data because the electrode-skin contact impedance is high and varies with electrode location. We developed a compound electrode which is composed of two electrodes: a large outer electrode to inject current and a small inner electrode to sense voltage. ⋯ This demonstrates that the compound electrode can minimize contact impedance voltage drop from the measured data. We used a finite element model for the compound electrode and incorporated the model into the regularized Newton-Raphson reconstruction algorithm. We performed a sensitivity study and showed that the reconstructed resistivity distributions are less dependent on the unknown contact resistance values for a compound electrode than a conventional electrode and that the use of a compound electrode results in improved images for the reconstruction algorithm.