IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · Apr 2002
Cascaded differential and wavelet compression of chromosome images.
This paper proposes a new method for chromosome image compression based on an important characteristic of these images: the regions of interest (ROIs) to cytogeneticists for evaluation and diagnosis are well determined and segmented. Such information is utilized to advantage in our compression algorithm, which combines lossless compression of chromosome ROIs with lossy-to-lossless coding of the remaining image parts. ⋯ The well-known set partitioning in hierarchical trees (SPIHT) (Said and Perlman, 1996) algorithm is modified to generate separate embedded bit streams for both chromosome ROIs and the rest of the image that allow continuous lossy-to-lossless compression of both (although lossless compression of the former is commonly used in practice). Experiments on two sets of sample chromosome spread and karyotype images indicate that the proposed approach significantly outperforms current compression techniques used in commercial karyotyping systems and JPEG-2000 compression, which does not provide the desirable support for lossless compression of arbitrary ROIs.
-
IEEE Trans Biomed Eng · Apr 2002
An efficient coding algorithm for the compression of ECG signals using the wavelet transform.
A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. ⋯ The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.