IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · Jul 2003
Measurement of in vivo local shear modulus using MR elastography multiple-phase patchwork offsets.
Magnetic resonance elastography (MRE) is a method that can visualize the propagating and standing shear waves in an object being measured. The quantitative value of a shear modulus can be calculated by estimating the local shear wavelength. Low-frequency mechanical motion must be used for soft, tissue-like objects because a propagating shear wave rapidly attenuates at a higher frequency. ⋯ MRE images with multiple initial phase offsets can be generated with increasing delays between the MSG and mechanical vibrations. This paper proposes a method for measuring the local shear wavelength using MRE multiple initial phase patchwork offsets that can be used when the size of the object being measured is shorter than the local wavelength. To confirm the reliability of the proposed method, computer simulations, a simulated tissue study and in vitro and in vivo studies were performed.
-
IEEE Trans Biomed Eng · Jul 2003
Predicting the threshold of single-pulse electrical stimuli using a stochastic auditory nerve model: the effects of noise.
An important factor that may play a role in speech recognition by individuals with cochlear implants is that electrically stimulated nerves respond with a much higher level of synchrony than is normally observed in acoustically stimulated nerves. Recent work has indicated that the addition of noise to an electrical stimulus may result in neural responses whose statistical characteristics are more similar to those observed in acoustically driven neurons. Psychophysical data have indicated that performance on some tasks might also be enhanced by the addition of noise. ⋯ All theoretical PMFs are verified by simulations with the model. Theoretical threshold is predicted as a function of noise level based on these PMFs and the predictions match simulated performance. The results indicate that threshold may be adversely affected by the presence of high levels of noise.