IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · May 2004
Comparative StudyA closed-loop mechanical ventilation controller with explicit objective functions.
A closed-loop lung ventilation controller was designed, aiming to: 1) track a desired end-tidal CO2 pressure (Pet CO2), 2) find the positive end-expiratory pressure (PEEP) of minimum estimated respiratory system elastance (Ers,e), and 3) follow objective functions conjectured to reduce lung injury. After numerical simulations, tests were performed in six paralyzed piglets. Respiratory mechanics parameters were estimated by the recursive least squares (RLS) method. ⋯ The resulting CO2 controller dynamics approximate physiological responses, and results from PEEP control were similar to those obtained by manual titration. Multiple dependencies linking the involved variables are discussed. The present controller can help to implement and evaluate objective functions that meet clinical goals.
-
IEEE Trans Biomed Eng · May 2004
Spatio-temporal cortical source imaging of brain electrical activity by means of time-varying parametric projection filter.
In the present study, we explore suitable spatio-temporal filters for inverse estimation of an equivalent dipole-layer distribution from the scalp electroencephalogram (EEG) for imaging of brain electric sources. We propose a time-varying parametric projection filter (tPPF) for the spatio-temporal EEG analysis. The performance of this tPPF algorithm was evaluated by computer simulation studies. ⋯ An equivalent dipole layer was used to represent equivalently brain electric sources and estimated from the scalp potentials. The tPPF filter was tested to remove time-varying noise such as instantaneous artifacts caused by eyes-blink. The present simulation results indicate that the proposed time-variant tPPF method provides enhanced performance in rejecting time-varying noise, as compared with the time-invariant parametric projection filter.