IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · Sep 2004
Comparative Study Clinical TrialBlind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals.
Electromyographic (EMG) recordings detected over the skin may be mixtures of signals generated by different active muscles due to the phenomena related to volume conduction. Separation of the sources is necessary when single muscle activity has to be detected. Signals generated by different muscles may be considered uncorrelated but in general overlap in time and frequency. ⋯ The ratio between root-mean-square values of the signals from the two sources detected over one of the muscles increased from (mean +/- standard deviation) 2.33 +/- 1.04 to 4.51 +/- 1.37 and from 1.55 +/- 0.46 to 2.72 +/- 0.65 for wrist flexion and rotation, respectively. This increment was statistically significant. It was concluded that the BSS approach applied is promising for the separation of surface EMG signals, with applications ranging from muscle assessment to detection of muscle activation intervals, and to the control of myoelectric prostheses.
-
IEEE Trans Biomed Eng · Sep 2004
Comparative Study Clinical TrialClassification of anatomical structures in MR brain images using fuzzy parameters.
We present an algorithm that automatically segments and classifies the brain structures in a set of magnetic resonance (MR) brain images using expert information contained in a small subset of the image set. The algorithm is intended to do the segmentation and classification tasks mimicking the way a human expert would reason. The algorithm uses a knowledge base taken from a small subset of semiautomatically classified images that is combined with a set of fuzzy indexes that capture the experience and expectation a human expert uses during recognition tasks. ⋯ The algorithm uses low-level image processing techniques on a pixel basis for the segmentations, then validates or corrects the segmentations, and makes the final classification decision using higher level criteria measured by the set of fuzzy indexes. We use single-echo MR images because of their high volumetric resolution; but even though we are working with only one image per brain slice, we have multiple sources of information on each pixel: absolute and relative positions in the image, gray level value, statistics of the pixel and its three-dimensional neighborhood and relation to its counterpart pixels in adjacent images. We have validated our algorithm for ease of use and precision both with clinical experts and with measurable error indexes over a Brainweb simulated MR set.
-
IEEE Trans Biomed Eng · Sep 2004
Comparative StudyExtracellular recordings from patterned neuronal networks using planar microelectrode arrays.
Neuronal cell networks have been reconstructed on planar microelectrode arrays (MEAs) from dissociated hippocampal pyramidal neurons. Microcontact printing (microCP) and a photoresist-liftoff method were used to selectively localize poly-L-lysine (PLL) on the surface of MEAs. ⋯ Bursting activity with spike amplitude attenuation was observed, and multichannel recordings detected instances of coincident firing activity. Finally, we present here an extracellular recording from a approximately 2 microm bundle of guided neurites.
-
IEEE Trans Biomed Eng · Sep 2004
Comparative StudyChronic measurement of the stimulation selectivity of the flat interface nerve electrode.
The flat interface nerve electrode (FINE) is an attempt to improve the stimulation selectivity of extraneural electrodes. By reshaping peripheral nerves into elliptical cylinders, central fibers are moved closer to the nerve-electrode interface, and additional surface area is created for contact placement. The goals of this study were to test the hypothesis that greater nerve reshaping leads to improved selectivity and to examine the chronic recruitment properties of the FINE. ⋯ Both the selectivity measurements and the recruitment curve characteristics were stable throughout the implant period. From an electrophysiological standpoint, the FINE is a viable alternative for neuroprosthetic devices. A histological analysis of the nerves is under way to evaluate the safety of the FINE.
-
IEEE Trans Biomed Eng · Sep 2004
Comparative StudySimulation of surface EMG signals generated by muscle tissues with inhomogeneity due to fiber pinnation.
Surface electromyographic (EMG) signal modeling has important applications in the interpretation of experimental EMG data. Most models of surface EMG generation considered volume conductors homogeneous in the direction of propagation of the action potentials. However, this may not be the case in practice due to local tissue inhomogeneities or to the fact that there may be groups of muscle fibers with different orientations. ⋯ In these conditions, the potentials detected at the skin surface do not travel without shape changes. This determines numerical issues in the implementation of the model which are addressed in this work. The study provides the solution of the nonhomogenous, anisotropic problem, proposes an implementation of the results in complete surface EMG generation models (including finite-length fibers), and shows representative results of the application of the models proposed.