IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · Jun 2005
Comparative Study Clinical Trial Controlled Clinical TrialAdaptive model initialization and deformation for automatic segmentation of T1-weighted brain MRI data.
A fully automatic, two-step, T1-weighted brain magnetic resonance imaging (MRI) segmentation method is presented. A preliminary mask of parenchyma is first estimated through adaptive image intensity analysis and mathematical morphological operations. It serves as the initial model and probability reference for a level-set algorithm in the second step, which finalizes the segmentation based on both image intensity and geometric information. ⋯ For the 28 patient scans acquired at our institution, the average Dice coefficient was 98.2% and the mean Euclidean surface distance measure was 0.074 mm. The entire segmentation for either a simulated or a clinical image volume finishes within 2 min on a modern PC system. The accuracy and speed of this technique allow us to automatically create patient-specific finite element models within the operating room on a timely basis for application in image-guided updating of preoperative scans.
-
IEEE Trans Biomed Eng · Jun 2005
Clinical TrialEffects of external pressure on arteries distal to the cuff during sphygmomanometry.
The aim of this study was to examine the effect on distal arteries of external pressure, applied by upper arm sphygmomanometer cuff. Photoplethysmographic (PPG) signals were measured on the index fingers of 44 healthy male subjects, during the slow decrease of cuff air pressure. For each pulse the ratio of PPG amplitude to its baseline (AM/BL) and its time delay (deltaTD) relative to the contralateral hand were determined as a function of cuff pressure. ⋯ At cuff pressures equal to diastolic blood pressure (81 +/- 12 mmHg), deltaTD was 42 +/- 19 ms (p < 0.001), and at 50 mmHg, which is below diastolic blood pressure, (deltaTD) was still significantly positive at 6 +/- 9 ms (p < 0.001). AM/BL relative to its initial value rose at cuff pressures between systolic and diastolic blood pressure, then deceased to 0.6 +/- 0.41 (p < 0.001) at diastolic blood pressure and 0.54 +/- 0.24 (p < 0.001) at 50 mmHg. The changes in (deltaTD) and AM/BL can be interpreted as originating from changes in the compliance of conduit arteries and small arteries with cuff inflation and deflation.
-
IEEE Trans Biomed Eng · Jun 2005
Comparative StudyA 2-D ECG compression method based on wavelet transform and modified SPIHT.
A two-dimensional (2-D) wavelet-based electrocardiogram (ECG) data compression method is presented which employs a modified set partitioning in hierarchical trees (SPIHT) algorithm. This modified SPIHT algorithm utilizes further the redundancy among medium- and high-frequency subbands of the wavelet coefficients and the proposed 2-D approach utilizes the fact that ECG signals generally show redundancy between adjacent beats and between adjacent samples. ⋯ Records selected from the MIT-BIH arrhythmia database are tested. The experimental results show that the proposed method achieves high compression ratio with relatively low distortion and is effective for various kinds of ECG morphologies.
-
IEEE Trans Biomed Eng · Jun 2005
Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. ⋯ The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.