IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · Sep 2005
Clinical TrialApplication of a neuro-fuzzy network for gait event detection using electromyography in the child with cerebral palsy.
An adaptive neuro-fuzzy inference system (ANFIS) with a supervisory control system (SCS) was used to predict the occurrence of gait events using the electromyographic (EMG) activity of lower extremity muscles in the child with cerebral palsy (CP). This is anticipated to form the basis of a control algorithm for the application of electrical stimulation (ES) to leg or ankle muscles in an attempt to improve walking ability. Either surface or percutaneous intramuscular electrodes were used to record the muscle activity from the quadriceps muscles, with concurrent recording of the gait cycle performed using a VICON motion analysis system for validation of the ANFIS with SCS. ⋯ Overall accuracy in predicting gait events ranged from 98.6% to 95.3% (root mean-squared error between 0.7 and 1.5). Application of the ANFIS with the SCS to the prediction of gait events using EMG data collected two months after the initial data demonstrated comparable results, with no significant differences between gait event detection times. The accuracy rate and robustness of the ANFIS with SCS with two EMG signals suggests its applicability to ES control.
-
IEEE Trans Biomed Eng · Sep 2005
Comparative StudyIn vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes.
The charge-injection limits of activated iridium oxide electrodes (AIROF) and PtIr microelectrodes with similar geometric area and shape have been compared in vitro using a stimulation waveform that delivers cathodal current pulses with current-limited control of the electrode bias potential in the interpulse period. Charge-injection limits were compared over a bias range of 0.1-0.7 V (versus Ag/AgCl) and pulse frequencies of 20, 50, and 100 Hz. The AIROF was capable of injecting between 4 and 10 times the charge of the PtIr electrode, with a maximum value of 3.9 mC/cm2 obtained at a 0.7 V bias and 20 Hz frequency.