IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · May 2009
Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses.
The Hodgkin-Huxley (HH) model does not simulate the significant changes in auditory nerve fiber (ANF) responses to sustained stimulation that are associated with neural adaptation. Given that the electric stimuli used by cochlear prostheses can result in adapted responses, a computational model incorporating an adaptation process is warranted if such models are to remain relevant and contribute to related research efforts. In this paper, we describe the development of a modified HH single-node model that includes potassium ion ( K(+)) concentration changes in response to each action potential. ⋯ In addition to spike-rate changes, jitter and spike intervals were evaluated and found to change with the addition of modeled adaptation. These results provide one means of incorporating a heretofore neglected (although important) aspect of ANF responses to electric stimuli. Future studies could include evaluation of alternative versions of the adaptation model elements and broadening the model to simulate a complete axon, and eventually, a spatially realistic model of the electrically stimulated nerve within extracochlear tissues.