IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · Jun 2010
Wavelet-based ECG data compression system with linear quality control scheme.
Maintaining reconstructed signals at a desired level of quality is crucial for lossy ECG data compression. Wavelet-based approaches using a recursive decomposition process are unsuitable for real-time ECG signal recoding and commonly obtain a nonlinear compression performance with distortion sensitive to quantization error. The sensitive response is caused without compromising the influences of word-length-growth (WLG) effect and unfavorable for the reconstruction quality control of ECG data compression. ⋯ The quantization scheme can be controlled with a single control variable. Based on the linear compression performance, a linear quantization scale prediction model is presented for guaranteeing reconstruction quality. Following the use of the MIT-BIH arrhythmia database, the experimental results show that the proposed system, with lower computational complexity, can obtain much better reconstruction quality control than other wavelet-based methods.
-
IEEE Trans Biomed Eng · Jun 2010
Mathematical modeling of CSF pulsatile hydrodynamics based on fluid-solid interaction.
Intracranial pressure (ICP) is derived from cerebral blood pressure and cerebrospinal fluid (CSF) circulatory dynamics and can be affected in the course of many diseases. Computer analysis of the ICP time pattern plays a crucial role in the diagnosis and treatment of those diseases. This study proposes the application of Linninger et al.'s [IEEE Trans. ⋯ Based on the experimental results, no existence of large transmural pressure differences were found in the brain system. The measured pressure drop in the ventricular system was less than 5 Pa. Moreover, the CSF flow pattern, ICP distribution, and velocity magnitude were in good agreement with the published models and CINE (phase-contrast magnetic resonance imaging) experiments, respectively.