IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · Jul 2005
Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays.
Two thin-film microelectrode arrays with integrated circuitry have been developed for extracellular neural recording in behaving animals. An eight-site probe for simultaneous neural recording and stimulation has been designed that includes on-chip amplifiers that can be individually bypassed, allowing direct access to the iridium sites for electrical stimulation. The on-probe amplifiers have a gain of 38.9 dB, an upper-cutoff frequency of 9.9 kHz, and an input-referred noise of 9.2 microV rms integrated from 100 Hz to 10 kHz. ⋯ Providing gain on this array eliminates the need for bulky headmounted circuitry and reduces motion artifacts. The time-division multiplexing circuitry has crosstalk between consecutive channels of less than 6% at a sample rate of 20 kHz per channel. Amplified, time-division-multiplexed multichannel neural recording allows the large-scale recording of neuronal activity in freely behaving small animals with minimum number of interconnect leads.
-
IEEE Trans Biomed Eng · Jul 2005
Clinical TrialApplication of higher order statistics techniques to EMG signals to characterize the motor unit action potential.
The electromyographic (EMG) signal provides information about the performance of muscles and nerves. At any instant, the shape of the muscle signal, motor unit action potential (MUAP), is constant unless there is movement of the position of the electrode or biochemical changes in the muscle due to changes in contraction level. The rate of neuron pulses, whose exact times of occurrence are random in nature, is related to the time duration and force of a muscle contraction. ⋯ In this paper, we report results from applying a cepstrum of bispectrum based system reconstruction algorithm to real wired-EMG (wEMG) and surface-EMG (sEMG) signals to estimate the appearance of MUAPs in the Rectus Femoris and Vastus Lateralis muscles while the muscles are at rest and in six other contraction positions. It is observed that the appearance of MUAPs estimated from any EMG (wEMG or sEMG) signal clearly shows evidence of motor unit recruitment and crosstalk, if any, due to activity in neighboring muscles. It is also found that the shape of MUAPs remains the same on loading.
-
IEEE Trans Biomed Eng · Jul 2005
A programmable microsystem using system-on-chip for real-time biotelemetry.
A telemetry microsystem, including multiple sensors, integrated instrumentation and a wireless interface has been implemented. We have employed a methodology akin to that for System-on-Chip microelectronics to design an integrated circuit instrument containing several "intellectual property" blocks that will enable convenient reuse of modules in future projects. The present system was optimized for low-power and included mixed-signal sensor circuits, a programmable digital system, a feedback clock control loop and RF circuits integrated on a 5 mm x 5 mm silicon chip using a 0.6 microm, 3.3 V CMOS process. ⋯ The base station was designed to be adaptive and timing tolerant since the microsystem design was simplified to reduce power consumption and size. The telemetry system was found to have a packet error rate of 10(-3) using an asynchronous simplex link. Trials in animal carcasses were carried out to show that the transmitter was as effective as a conventional RF device whilst consuming less power.
-
IEEE Trans Biomed Eng · Jun 2005
Comparative Study Clinical Trial Controlled Clinical TrialAdaptive model initialization and deformation for automatic segmentation of T1-weighted brain MRI data.
A fully automatic, two-step, T1-weighted brain magnetic resonance imaging (MRI) segmentation method is presented. A preliminary mask of parenchyma is first estimated through adaptive image intensity analysis and mathematical morphological operations. It serves as the initial model and probability reference for a level-set algorithm in the second step, which finalizes the segmentation based on both image intensity and geometric information. ⋯ For the 28 patient scans acquired at our institution, the average Dice coefficient was 98.2% and the mean Euclidean surface distance measure was 0.074 mm. The entire segmentation for either a simulated or a clinical image volume finishes within 2 min on a modern PC system. The accuracy and speed of this technique allow us to automatically create patient-specific finite element models within the operating room on a timely basis for application in image-guided updating of preoperative scans.
-
IEEE Trans Biomed Eng · Jun 2005
Clinical TrialEffects of external pressure on arteries distal to the cuff during sphygmomanometry.
The aim of this study was to examine the effect on distal arteries of external pressure, applied by upper arm sphygmomanometer cuff. Photoplethysmographic (PPG) signals were measured on the index fingers of 44 healthy male subjects, during the slow decrease of cuff air pressure. For each pulse the ratio of PPG amplitude to its baseline (AM/BL) and its time delay (deltaTD) relative to the contralateral hand were determined as a function of cuff pressure. ⋯ At cuff pressures equal to diastolic blood pressure (81 +/- 12 mmHg), deltaTD was 42 +/- 19 ms (p < 0.001), and at 50 mmHg, which is below diastolic blood pressure, (deltaTD) was still significantly positive at 6 +/- 9 ms (p < 0.001). AM/BL relative to its initial value rose at cuff pressures between systolic and diastolic blood pressure, then deceased to 0.6 +/- 0.41 (p < 0.001) at diastolic blood pressure and 0.54 +/- 0.24 (p < 0.001) at 50 mmHg. The changes in (deltaTD) and AM/BL can be interpreted as originating from changes in the compliance of conduit arteries and small arteries with cuff inflation and deflation.