IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · Jul 1993
Comparative StudySelective control of muscle activation with a multipolar nerve cuff electrode.
Acute experiments were performed on adult cats to study selective activation of medial gastrocnemius, soleus, tibialis anterior, and extensor digitorum longus with a cuff electrode. A spiral nerve cuff containing twelve "dot" electrodes was implanted around the sciatic nerve and evoked muscle twitch forces were recorded in six experiments. Spatially isolated "dot" electrodes in four geometries: monopolar, longitudinal tripolar, tripolar with four common anodes, and two parallel tripoles, were combined with transverse field steering current(s) from an anode(s) located 180 degrees around from the cathode(s) to activate different regions of the nerve trunk. ⋯ We also found that tripoles with individual dot anodes were more selective than tripoles with four common dot anodes. Stimulation with two parallel tripoles was effective in activating selectively fascicles that could not be activated selectively with only a single tripole. The multipolar cuff proved an effective method to control selectively and progressively the force in muscles innervated by fascicles that were well defined at the level of the cuff.
-
IEEE Trans Biomed Eng · May 1993
Selective stimulation of peripheral nerve fibers using dual intrafascicular electrodes.
We have studied activation of nerve fibers by pairs of Pt-Ir wire electrodes implanted within single fascicles of the nerve innervating the gastrocnemius muscle in cats. The purpose of this study was to determine if these intrafascicular electrodes can activate nerve fibers in different fascicles independently of each other and if they can also be used to activate separate subsets of axonal populations within a single fascicle. The average overlap of activated nerve fiber populations was 5.5% between fascicles and 27% within a fascicle, indicating that such selective activation is possible with these electrodes.
-
IEEE Trans Biomed Eng · May 1993
Multichannel ECG data compression by multirate signal processing and transform domain coding techniques.
In this paper, a multilead ECG data compression method is presented. First, a linear transform is applied to the standard ECG lead signals which are highly correlated with each other. In this way a set of uncorrelated transform domain signals is obtained. Then, resulting transform domain signals are compressed using various coding methods, including multirate signal processing and transform domain coding techniques.
-
IEEE Trans Biomed Eng · Apr 1993
Finite element modeling of electrode-skin contact impedance in electrical impedance tomography.
In electrical impedance tomography (EIT), we inject currents through and measure voltages from an array of surface electrodes. The measured voltages are sensitive to electrode-skin contact impedance because the contact impedance and the current density through this contact impedance are both high. We used large electrodes to provide a more uniform current distribution and reduce the contact impedance. ⋯ We used the finite element method (FEM) to study the electric field distributions underneath an electrode, and developed three models: a FEM model, a simplified FEM model and a weighted load model. We showed that the FEM models considered both shunting and edge effects and matched closely the experimental measurements. FEM models for electrodes can be used to improve the performance of an electrical impedance tomography reconstruction algorithm.
-
In electrical impedance tomography, we inject currents and measure voltages to estimate an object's resistivity distribution. The electrode configuration affects measured voltage data because the electrode-skin contact impedance is high and varies with electrode location. We developed a compound electrode which is composed of two electrodes: a large outer electrode to inject current and a small inner electrode to sense voltage. ⋯ This demonstrates that the compound electrode can minimize contact impedance voltage drop from the measured data. We used a finite element model for the compound electrode and incorporated the model into the regularized Newton-Raphson reconstruction algorithm. We performed a sensitivity study and showed that the reconstructed resistivity distributions are less dependent on the unknown contact resistance values for a compound electrode than a conventional electrode and that the use of a compound electrode results in improved images for the reconstruction algorithm.