Journal of pharmacological sciences
-
In this study, the antinociceptive effect of shakuyakukanzoto was investigated using streptozotocin-induced diabetic mice to certify its analgesic effect on diabetic patients. Shakuyakukanzoto (0.5 and 1.0 g/kg, p.o.) significantly increased the nociceptive threshold in diabetic mice. The antinociceptive activity of shakuyakukanzoto in diabetic mice was not antagonized by beta-funaltrexamine, naltrindole, or nor-binaltorphimine. ⋯ Furthermore, the antinociceptive activity induced by norepinephrine (0.06 - 2 microg, i.t.) was markedly more potent in diabetic mice than in non-diabetic mice at the same dose. These results suggest that the antinociceptive effect of shakuyakukanzoto in diabetic mice is not mediated by the opioid systems and that this effect appears via selective activation of the spinal descending inhibitory alpha2-adrenergic systems without activating the serotonergic systems. The spinal alpha2-adrenoceptor-mediated analgesic mechanism was enhanced in diabetic mice, suggesting that shakuyakukanzoto exhibits its effect by activating the descending noradrenergic neurons.
-
We evaluated the interaction between electroacupuncture (EA)-induced antinociception and an endogenous anti-analgesic system. EA was applied to the ST-36 acupoint for 45 min in male Sprague-Dawley rats, and pain thresholds were assessed by the hind-paw pressure test. EA produced a marked increase in pain thresholds and its antinociceptive action was completely reversed by naloxone (5 mg/kg). ⋯ Moreover, i.c.v. morphine, but not i.t. morphine, produced hyperthermia. The i.c.v. morphine-induced hyperthermia was not affected by EA, similar to i.c.v. morphine analgesia. These results suggest that the attenuation of morphine analgesia following EA, that is, the activation of an endogenous anti-analgesic system, is closely related to the activation of an analgesic system by EA and that the spinal cord plays a critical role in the activation of the endogenous anti-analgesic systems.