Journal of pharmacological sciences
-
d-Pseudoephedrine (PSE) is one of the main ingredients of Ephedrae herba. Although PSE is widely applied for patients with a common cold and upper respiratory inflammation as a decongestant, the effects of PSE on cough have never been reported. In this study, we investigated the antitussive effects of intraperitoneal injection of PSE on the cough reflex induced by microinjection of citric acid into the larynx of guinea pigs. ⋯ Furthermore, PSE (60 mg/kg) increased the threshold intensity for inducing fictive cough by electrical micro-stimulation of the nucleus tractus solitarius (+72.7 +/- 8.4%, P<0.01). On the afferent discharge of the superior laryngeal nerve, PSE suppressed the increases of amplitude and frequency when stimulated by citric acid at laryngeal mucosa. These results demonstrate that PSE possesses an antitussive effect that might be derived from both central and peripheral actions.
-
Peripheral nerve injury leads to the establishment of a novel synaptic connection between afferent Abeta-fiber and lamina II neurons in spinal dorsal horn, which is hypothesized to underlie mechanical allodynia. However, how the novel synapses transmit nociceptive information is poorly understood. In the present study, the role of protein tyrosine kinases (PTKs) in Abeta-fiber-evoked excitatory postsynaptic currents (EPSCs) recorded in lamina II neurons in transverse spinal cord slices of rats was investigated using the whole-cell patch-clamp recording technique. ⋯ Following nerve injury, the slow inward currents elicited by bath application of NMDA (100 muM) significantly increased at -70 mV. In SNT rats, genistein and PP2 reduced Abeta-fiber-evoked EPSCs mediated by NMDA receptor; however, genistein produced little effect on Abeta-fiber EPSCs mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. These data suggested that PTKs, especially Src family members, participated in Abeta-fiber-evoked synaptic transmission following sciatic nerve injury via potentiation of NMDA receptor function.