Journal of the Chinese Medical Association : JCMA
-
Case Reports
Identification of a de novo TSC2 variant in a Han-Chinese family with tuberous sclerosis complex.
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder with a variety of clinical findings. Variants in the TSC complex subunit 1 gene (TSC1) or the TSC complex subunit 2 gene (TSC2) are responsible for TSC. ⋯ The study expanding the disease-causing variant spectrum, suggests that whole-exome sequencing combined with Sanger sequencing may be a method for TSC diagnosis and differential diagnosis, and may facilitate the development of genetic counseling and targeted gene therapy for this disease.
-
Nonalcoholic steatohepatitis (NASH) is closely related to reactive oxygen species (ROS). Superoxide anion radicals, the main product of ROS, can be reduced by manganese superoxide dismutase (SOD2) to hydrogen peroxide, which is further reduced by catalase (CAT) and glutathione peroxidase (GPX) to water. We aimed to investigate the association between the most important genetic variants of SOD2, CAT, and GPX1 and susceptibility to NASH. ⋯ The genetic variations of CAT and SOD2 may increase the risk of NASH, which may aid in the screening of patients who are at high risk of NASH, and offer a potential anti-oxidant targeting route for the treatment of NASH.
-
Premature infants often require oxygen (O2) therapy for respiratory distress syndrome; however, excessive use of O2 can cause clinical conditions such as bronchopulmonary dysplasia. Although many treatment methods are currently available, they are not effective in preventing bronchopulmonary dysplasia. Herein, we explored the role of tripartite motif protein 72 (TRIM72), a factor involved in repairing alveolar epithelial wounds, in regulating alveolar cells upon hyperoxia exposure. ⋯ Hyperoxia upregulates TRIM72 expression in neonatal rat lung tissue; moreover, it initiates TRIM72-dependent alveolar epithelial cell death, leading to hyperoxia-induced lung injury.
-
Liposomes containing docosahexaenoic acid (DHA) and phosphatidylserine were claimed to inhibit osteoclast formation and bone resorption in the inflammatory status. Herein, we proposed that an apoptotic mimicry (SQ liposome) prepared from squid-skin phospholipids can explore the suppressive osteoclastogenesis. ⋯ In summary, current data support that a possible prevention of our prepared SQ liposomes which are rich in DHA and EPA on bone loss is through the suppression of osteoclastogenesis. Moreover, based on the results from this study an in vivo study warrants a further investigation.