Chinese medical journal
-
Chinese medical journal · Sep 2020
ReviewGut-lymph-lung pathway mediates sepsis-induced acute lung injury.
This review attempts to unveil the possible mechanisms underlying how gut lymph affects lung and further gives rise to acute respiratory distress syndrome, as well as potential interventional targets under the condition of ischemia-reperfusion injury. We searched electronic databases including PubMed, MEDLINE, Cochrane Central Register of Controlled Trials, Google Scholar, Web of Science, and Embase to identify relevant literatures published up to December 2019. We enrolled the literatures including the Mesh Terms of "gut lymph or intestinal lymph and acute lung injury or acute respiratory distress syndrome." Gut is considered to be the origin of systemic inflammation and the engine of multiple organ distress syndrome in the field of critical care medicine, whereas gut lymph plays a pivotal role in initiation of ischemia-reperfusion injury-induced acute respiratory distress syndrome. In fact, in the having been established pathologic model of sepsis leading to multiple organ dysfunction named by Gut Lymph theory, a variety of literatures showed the position and role of changes in gut lymph components in the initiation of systemic inflammatory response, which allows us to screen out potential intervention targets to pave the way for future clinic and basic research.
-
Mechanical power of ventilation, currently defined as the energy delivered from the ventilator to the respiratory system over a period of time, has been recognized as a promising indicator to evaluate ventilator-induced lung injury and predict the prognosis of ventilated critically ill patients. Mechanical power can be accurately measured by the geometric method, while simplified equations allow an easy estimation of mechanical power at the bedside. There may exist a safety threshold of mechanical power above which lung injury is inevitable, and the assessment of mechanical power might be helpful to determine whether the extracorporeal respiratory support is needed in patients with acute respiratory distress syndrome. ⋯ Problems regarding the safety limits of mechanical power and contribution of each component to lung injury have not been determined yet. Whether mechanical power-directed lung-protective ventilation strategy could improve clinical outcomes also needs further investigation. Therefore, this review discusses the algorithms, clinical relevance, optimization, and future directions of mechanical power in critically ill patients.
-
Chinese medical journal · Sep 2020
Meta AnalysisPrognostic significance of the hemoglobin A1c level in non-diabetic patients undergoing percutaneous coronary intervention: a meta-analysis.
The predictive value of hemoglobin A1c (HbA1c) levels in non-diabetic patients with myocardial infarction undergoing percutaneous coronary intervention (PCI) is still controversial. This study aimed to evaluate whether HbA1c levels were independently associated with adverse clinical outcomes in non-diabetic patients with coronary artery disease (CAD) who had undergone PCI by performing a meta-analysis of cohort studies. ⋯ An abnormal HbA1c level is an independent risk factor for long-term adverse clinical events in non-diabetic patients with CAD after PCI. Strict control of HbA1c levels may improve patient survival. Further studies in different countries and prospective cohort studies with a large sample size are required to verify the association.
-
Chinese medical journal · Sep 2020
ReviewInduction and deduction in sepsis-induced cardiomyopathy: five typical categories.
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The heart is one of the most important oxygen delivery organs, and dysfunction significantly increases the mortality of the body. Hence, the heart has been studied in sepsis for over half a century. ⋯ Patients with mechanical ventilation, acute respiratory distress syndrome or other complications of increased right ventricular afterload mostly have right ventricular dysfunction. Diffuse cardiac dysfunction has also been shown in some studies; patients with mixed or co-existing cardiac dysfunction are more common, theoretically. Thus, understanding the pathophysiology of sepsis-induced cardiomyopathy from the perspective of critical care echocardiography is essential.