Chinese medical journal
-
Chinese medical journal · Oct 2018
Feasibility Analysis of Oxygen-Glucose Deprivation-Nutrition Resumption on H9c2 Cells In vitro Models of Myocardial Ischemia-Reperfusion Injury.
Oxygen-glucose deprivation-nutrition resumption (OGD-NR) models on H9c2 cells are commonly used in vitro models of simulated myocardial ischemia-reperfusion injury (MIRI), but no study has assessed whether these methods for establishing in vitro models can effectively imitate the characteristics of MIRI in vivo. This experiment was designed to analyze the feasibility of six OGD-NR models of MIRI. ⋯ All the six OGD-NR models on H9c2 cells in this experiment can not imitate the characteristics of MIRI in vivo and are not suitable for MIRI-related study.
-
This study was to review the efficacy of surgical resections in different clinical situations for a better understanding of the meaning of surgery in the treatment of neuroblastoma (NB). ⋯ NB prognosis varies tremendously based on the stage and biologic features of the tumor. After reviewing the relevant literature, patients with low-risk disease are often managed with surgical resection or observation alone with tumors likely to spontaneously regress that are not causing symptoms. Intermediate patients are treated with chemotherapy with the number of cycles depending on their response as well as surgical resection of the primary tumor. High-risk patients remain controversial. Multidisciplinary intensive treatment is essential, especially for patients who received subtotal tumor resection. Minimally invasive surgery for the treatment of NBs without image-defined risk factors in low- to high-risk patients is safe and feasible and does not compromise the treatment outcome. We conclude that ≥90% resection of the primary tumor is both feasible and safe in most patients with high-risk NB. New targeted therapies are crucial to improve survival.
-
Chinese medical journal · Oct 2018
ReviewCommon Injuries and Repair Mechanisms in the Endothelial Lining.
Endothelial cells (ECs) are important metabolic and endocrinal organs which play a significant role in regulating vascular function. Vascular ECs, located between the blood and vascular tissues, can not only complete the metabolism of blood and interstitial fluid but also synthesize and secrete a variety of biologically active substances to maintain vascular tension and keep a normal flow of blood and long-term patency. Therefore, this article presents a systematic review of common injuries and healing mechanisms for the vascular endothelium. ⋯ ECs are always in the process of being damaged. Several therapeutic targets and drugs were seeked to protect the endothelium and promote repair.