Expert review of anti-infective therapy
-
Expert Rev Anti Infect Ther · Jul 2017
ReviewExtended infusion of beta-lactam antibiotics: optimizing therapy in critically-ill patients in the era of antimicrobial resistance.
Beta-lactams are at the cornerstone of therapy in critical care settings, but their clinical efficacy is challenged by the rise in bacterial resistance. Infections with multi-drug resistant organisms are frequent in intensive care units, posing significant therapeutic challenges. The problem is compounded by a dearth in the development of new antibiotics. ⋯ Several reports show promising results. Expert commentary: Reviewing the currently available evidence, we conclude that EI/CI is probably beneficial in the treatment of critically-ill patients in whom an organism has been identified, particularly those with respiratory infections. Further studies are needed to evaluate the efficacy of EI/CI in the management of infections with resistant organisms.
-
Expert Rev Anti Infect Ther · Jul 2017
Optimizing β-lactams treatment in critically-ill patients using pharmacokinetics/pharmacodynamics targets: are first conventional doses effective?
The pharmacokinetic/pharmacodynamic index determining β-lactam activity is the percentage of the dosing interval (%T) during which their free serum concentration remains above a critical threshold over the minimum inhibitory concentration (MIC). Regrettably, neither the value of %T nor that of the threshold are clearly defined for critically-ill patients. Areas covered: We review and assess the targets proposed for β-lactams in critical illness by screening the literature since 1997. ⋯ Simulation studies, however, show that this target will not be reached at first dose for the majority of critically-ill patients if using the most commonly recommended doses. Expert commentary: Considering that critically-ill patients are highly vulnerable and likely to experience antibiotic underexposure, and because effective initial treatment is a key determinant of clinical outcome, we support the use of a target of 100%T > 4xMIC, which could not only maximize efficacy but also minimize emergence of resistance. Clinical and microbiological studies are needed to test for the feasibility and effectiveness of reaching such a demanding target.