Stem cell reviews and reports
-
Review Historical Article
Fighting the War Against COVID-19 via Cell-Based Regenerative Medicine: Lessons Learned from 1918 Spanish Flu and Other Previous Pandemics.
The human population is in the midst of battling a rapidly-spreading virus- Severe Acute Respiratory Syndrome Coronavirus 2, responsible for Coronavirus disease 2019 or COVID-19. Despite the resurgences in positive cases after reopening businesses in May, the country is seeing a shift in mindset surrounding the pandemic as people have been eagerly trickling out from federally-mandated quarantine into restaurants, bars, and gyms across America. History can teach us about the past, and today's pandemic is no exception. ⋯ This review will cover our current understanding of the pathology and treatment for COVID-19 and highlight similarities between past pandemics. By revisiting history, we hope to emphasize the importance of human behavior and innovative therapies as we wait for the development of a vaccine. Graphical Abstract.
-
Coronavirus disease 2019 (COVID-19) is caused by novel coronavirus Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first time reported in December 2019 in Wuhan, China and thereafter quickly spread across the globe. Till September 19, 2020, COVID-19 has spread to 216 countries and territories. ⋯ The major underlying aspects that was looked into includes smoking, genetic factors, and the impact of reproductive hormones on immune systems and inflammatory responses. Detailed investigations of this gender disparity could provide insight into the development of patient tailored therapeutic approach which would be helpful in improving the poor outcomes of COVID-19. Graphical abstract.
-
Adoptive cell therapy using CAR T cells has emerged as a novel treatment strategy with promising results against B cell malignancies; however, CAR T cells have not shown much success against solid malignancies. There are several obstacles which diminish the efficacy of CAR T cells, but the immunosuppressive tumor microenvironment (TME) of the tumor stands out as the most important factor. TME includes Tumor-Associated Stroma, Immunosuppressive cells and cytokines, tumor hypoxia and metabolism, and Immune Inhibitory Checkpoints which affect the CAR T cell efficacy and activity in solid tumors. ⋯ In this review, we will describe different sections of the TME and introduce novel approaches to improve the CAR T cells potential against solid tumors based on recent clinical and preclinical data. Also, we will provide new suggestions on how to modify CARs to augment of CAR T cells efficacy. Since there are also some challenges beyond the TME that are important for CAR function, we will also discuss and provide data about the improvement of CAR T cells trafficking and delivery to the tumor site and how to solve the problem of tumor antigen heterogeneity.
-
Dental pulp stem cells (DPSC) are a heterogeneous population of highly proliferative stem cells located in the soft inner pulp tissue of the tooth. Demonstrated to have an affinity for neural differentiation, DPSC have been reported to generate functional Schwann cells (SC) through in vitro differentiation. Both DPSC and SC have neural crest origins, recently a significant population of DPSC have been reported to derive from peripheral nerve-associated glia. ⋯ Very few studies have investigated the healthy Tasmanian devil SC (tdSC) for comparative studies between tdSC and DFT cells, and the development and isolation of a tdSC population is yet to be undertaken. A Tasmanian devil DPSC model offers a promising new outlook for DFT research, and the link between SC and DPSC may provide a potential explanation as to how a cancerous SC initially arose in a single Tasmanian devil to then go on to infect others as a parasitic clonal cell line. In this review we explore the current role of DPSC in human regenerative medicine, provide an overview of the Tasmanian devil and the devastating effect of DFT, and highlight the promising potential DPSC techniques pose for DFT research and our current understanding of DFT.