Biomolecules
-
SARS-CoV-2, or COVID-19, has a devastating effect on our society, both in terms of quality of life and death rates; hence, there is an urgent need for developing safe and effective therapeutics against SARS-CoV-2. The most promising strategy to fight against this deadly virus is to develop an effective vaccine. Internalization of SARS-CoV-2 into the human host cell mainly occurs through the binding of the coronavirus spike protein (a trimeric surface glycoprotein) to the human angiotensin-converting enzyme 2 (ACE2) receptor. ⋯ Based on our MDS analysis, a five amino acid-based short linker (S-Linker) was the most effective for displaying the spike RBD over the surface of ferritin. The behavior of the spike RBD binding regions from the designed chimeric nanocages with the ACE2 receptor was highlighted. These data propose an effective multivalent synthetic nanocage, which might form the basis for new vaccine therapeutics designed against viruses such as SARS-CoV-2.
-
Review
Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions.
Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by the deficiency of α-galactosidase A (α-GalA) and the consequent accumulation of toxic metabolites such as globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3). Early diagnosis and appropriate timely treatment of FD patients are crucial to prevent tissue damage and organ failure which no treatment can reverse. LSDs might profit from four main therapeutic strategies, but hitherto there is no cure. ⋯ Unfortunately, FD patients can only benefit from ERT and, since 2016, PCT, both always combined with supportive adjunctive and preventive therapies to clinically manage FD-related chronic renal, cardiac and neurological complications. Gene therapy for FD is currently studied and further strategies such as substrate reduction therapy (SRT) and novel PCTs are under investigation. In this review, we discuss the molecular basis of FD, the pathophysiology and diagnostic procedures, together with the current treatments and potential therapeutic avenues that FD patients could benefit from in the future.