Critical care explorations
-
Patients with coronavirus disease 2019 acute respiratory distress syndrome appear to present with at least two distinct phenotypes: severe hypoxemia with relatively well-preserved lung compliance and lung gas volumes (type 1) and a more conventional acute respiratory distress syndrome phenotype, displaying the typical characteristics of the "baby lung" (type 2). We aimed to test plausible hypotheses regarding the pathophysiologic mechanisms underlying coronavirus disease 2019 acute respiratory distress syndrome and to evaluate the resulting implications for ventilatory management. ⋯ Our model suggests that use of standard positive end-expiratory pressure/Fio2 tables, higher positive end-expiratory pressure strategies, and higher tidal volumes may all be potentially deleterious in type 1 coronavirus disease 2019 acute respiratory distress syndrome patients, and that a highly personalized approach to treatment is advisable.
-
Microvascular thrombosis contributes to acute respiratory distress syndrome pathophysiology and has been demonstrated in coronavirus disease 2019-associated acute respiratory distress syndrome. Clinical laboratory measurements of coagulation and disseminated intravascular coagulation, such as coagulation factor function, platelet count, and fibrinogen, may not fully reflect the extent of microvascular thrombosis present in these patients. We investigated thromboelastography in patients with coronavirus disease 2019-associated acute respiratory distress syndrome with the objective of characterizing suspected coagulopathy and impaired fibrinolysis. ⋯ In coronavirus disease 2019 patients with acute respiratory distress syndrome in whom thromboelastography was performed, hypercoagulability and impaired fibrinolysis were observed. In the context of autopsy studies demonstrating pulmonary microvascular thromboses in coronavirus disease 2019 patients, noninvasive detection of hypercoagulability and deficient fibrinolysis in coronavirus disease 2019 acute respiratory distress syndrome using thromboelastography could improve understanding and management of coronavirus disease 2019.
-
To describe three coronavirus disease 2019 patients suffering from acute respiratory distress syndrome under venovenous extracorporeal membrane oxygenation therapy and tight anticoagulation monitoring presenting a novel pattern of multifocal brain hemorrhage in various degrees in all cerebral and cerebellar lobes. ⋯ Multifocality and high frequency of the unusual white matter hemorrhage pattern suggest a coherence to coronavirus disease 2019. Neuropathological analyses showed circumscribed thrombotic cerebrovascular occlusions, which eventually led to microvascular and later on macrovascular disseminated bleeding events. However, signs of cerebrovascular inflammation could not be detected. Polymerase chain reaction analyses of brain tissue or cerebrospinal fluid remained negative. Increased susceptibility for fatal bleeding events should be taken into consideration in terms of systemic anticoagulation strategies in coronavirus disease 2019.
-
To describe patients according to the maximum degree of respiratory support received and report their inpatient mortality due to coronavirus disease 2019. ⋯ Among patients hospitalized for coronavirus disease 2019, 13% received mechanical ventilation, which was associated with a mortality rate of 23%.
-
Case Reports
Treatment for Severe Coronavirus Disease 2019 With the Seraph-100 Microbind Affinity Blood Filter.
To determine whether Seraph-100 (Exthera Medical Corporation, Martinez, CA) treatment provides clinical benefit for severe coronavirus disease 2019 cases that require mechanical ventilation and vasopressor support.