Journal of the International Society for Respiratory Protection
-
J Int Soc Respir Prot · Jan 2020
Planning for Epidemics and Pandemics: Assessing the Potential Impact of Extended Use and Reuse Strategies on Respirator Usage Rates to Support Supply-and-Demand Planning Efforts.
During epidemics and pandemics healthcare personnel (HCP) are on the front line of disease containment and mitigation. Personal protective equipment (PPE), such as NIOSH-approved N95 filtering facepiece respirators (FFRs), serve an important role in minimizing HCP risks and are in high demand during public health emergencies. Because PPE demand can exceed supply, various public health strategies have been developed to reduce the rate of PPE consumption as supply dwindles. ⋯ The results suggest that a considerable reduction in PPE consumption would result from extended use and limited reuse of N95 FFRs and the increased use of respirators designed for reuse; however, the practical benefits must be balanced with the risks and economic costs. In addition, extended use and reuse strategies must be accompanied by proper procedures to reduce risk. The study is designed to support epidemic and pandemic PPE supply and demand planning efforts.
-
J Int Soc Respir Prot · Jan 2018
Flammability of Respirators and other Head and Facial Personal Protective Equipment.
Personal protective equipment (PPE) is worn by workers in surgical settings to protect them and patients. Food and Drug Administration (FDA) clears some PPE (e.g., surgical masks (SM)) as class II medical devices, and regulates some (e.g. surgical head cover) as class I exempt devices. For respiratory protection, National Institute for Occupational Safety and Health (NIOSH)-approved N95 filtering facepiece respirators (FFRs), and powered air-purifying respirators (PAPRs) are used. One type of PPE, "surgical N95 respirators", is a NIOSH-approved FFR that is also cleared by the FDA for use in medical settings. The surgical environment poses unique risks such as the potential for surgical fires. As part of its substantial equivalence determination process, FDA requests testing of flammability and other parameters for SM and surgical N95 respirators. A lack of data regarding flammability of PPE used in healthcare exists. We hypothesize that commonly used PPE, regardless of whether regulated and/or cleared by FDA or not, will pass an industry standard such as the 16 CFR 1610 flammability test. ⋯ The results obtained in the study suggest that NIOSH-approved N95 FFRs would likely pass the 16 CFR 1610 flammability standard. Moreover, results suggest that NIOSH is capable of undertaking flammability testing using the 16 CFR 1610 standard as the flammability results NIOSH obtained for N95 FFRs were comparable to the results obtained by a third party independent laboratory.
-
J Int Soc Respir Prot · Jan 2017
Development of a Manikin-Based Performance Evaluation Method for Loose-Fitting Powered Air-Purifying Respirators.
Loose-fitting powered air-purifying respirators (PAPRs) are increasingly being used in healthcare. NIOSH has previously used advanced manikin headforms to develop methods to evaluate filtering facepiece respirator fit; research has now begun to develop methods to evaluate PAPR performance using headforms. This preliminary study investigated the performance of PAPRs at different work rates to support development of a manikin-based test method. ⋯ PAPR model, work rate, and test configuration affect PAPR performance. Advanced headforms have potential for assessing PAPR performance once test methods can be matured. A manikin-based inward leakage test method for PAPRs can be further developed using the knowledge gained from this study. Future studies should vary PAPR airflow rate to better understand the effects on performance. Additional future research is needed to evaluate the correlation of PAPR performance using advanced headforms to the performance measured with human subjects.
-
J Int Soc Respir Prot · Jan 2016
Physiologic Effects from Using Tight- and Loose-Fitting Powered Air-Purifying Respirators on Inhaled Gases, Peak Pressures, and Inhalation Temperatures During Rest and Exercise.
The goal of this investigation was to evaluate the physiologic stresses of powered air-purifying respirators (PAPRs) used by workers in many industries (e.g., health care, automobile repair, public safety, building trades, etc.) during rest and three levels of energy expenditure. Twelve men and twelve women wore one tight-fitting and three loose-fitting PAPRs at rest (REST) and while walking for four minutes at oxygen consumption (V̇O2) rates of 1.0 l·min-1(LOW), 2.0 l·min-1 (MODERATE), and 3.0 l·min-1 or maximum (HIGH). Minimum inhaled carbon dioxide concentration (FICO2), maximum inhaled oxygen concentration (FIO2), peak inhalation pressure, and end inhalation temperature were measured continuously breath-by-breath. ⋯ Among all PAPR models, peak inhalation pressures were negative at V̇O2 > LOW, suggesting that peak inhalation flow was greater than blower flow. Results using the variables reported here suggest that PAPRs used at various levels of energy expenditure may be tolerated among healthy workers. Further research is needed to determine the source of supplemented air when inhalation flow exceeds blower flow.