Cells
-
COVID-19 infection has protean systemic manifestations. Experience from previous coronavirus outbreaks, including the current SARS-CoV-2, has shown an augmented risk of thrombosis of both macrovasculature and microvasculature. The former involves both arterial and venous beds manifesting as stroke, acute coronary syndrome and venous thromboembolic events. ⋯ These mechanisms are triggered by widespread endothelial cell damage (endotheliopathy), the dominant driver of macro- and micro-vascular thrombosis in these patients. We also summarize other mediators of thrombosis, clinically relevant nuances such as the occurrence of thromboembolic events despite thromboprophylaxis (breakthrough thrombosis), current understanding of systemic anticoagulation therapy and its risk-benefit ratio. We conclude by emphasizing a need to probe COVID-19-specific mechanisms of thrombosis to develop better risk markers and safer therapeutic targets.
-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that has sparked a global pandemic of the coronavirus disease of 2019 (COVID-19). The virus invades human cells through the angiotensin-converting enzyme 2 (ACE2) receptor-driven pathway, primarily targeting the human respiratory tract. ⋯ This review highlights the possible routes by which SARS-CoV-2 may invade the central nervous system (CNS) and provides insight into recent case reports of COVID-19-associated neurological disorders, namely ischaemic stroke, encephalitis, encephalopathy, epilepsy, neurodegenerative diseases, and inflammatory-mediated neurological disorders. We hypothesize that SARS-CoV-2 neuroinvasion, neuroinflammation, and blood-brain barrier (BBB) dysfunction may be implicated in the development of the observed disorders; however, further research is critical to understand the detailed mechanisms and pathway of infectivity behind CNS pathogenesis.
-
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of the Coronavirus disease (COVID-19) pandemic, has so far resulted in more than 1.1 M deaths and 40 M cases worldwide with no confirmed remedy yet available. Since the first outbreak in Wuhan, China in December 2019, researchers across the globe have been in a race to develop therapies and vaccines against the disease. SARS-CoV-2, similar to other previously identified Coronaviridae family members, encodes several structural proteins, such as spike, envelope, membrane, and nucleocapsid, that are responsible for host penetration, binding, recycling, and pathogenesis. ⋯ The spike glycoprotein has drawn considerable attention as a means to block viral entry owing to its interactions with the human angiotensin-converting enzyme 2 (ACE2), which acts as a receptor. Here, we review the current knowledge of SARS-CoV-2 and its interactions with ACE2 and antibodies. Structural information of SARS-CoV-2 spike glycoprotein and its complexes with ACE2 and antibodies can provide key input for the development of therapies and vaccines against the new coronavirus.