Heart rhythm : the official journal of the Heart Rhythm Society
-
Review
Prophylactic (hydroxy)chloroquine in COVID-19: Potential relevance for cardiac arrhythmia risk.
(Hydroxy)chloroquine ((H)CQ) is being investigated as a treatment for COVID-19, but studies have so far demonstrated either no or a small benefit. However, these studies have been mostly performed in patients admitted to the hospital and hence likely already (severely) affected. Another suggested approach uses prophylactic (H)CQ treatment aimed at preventing either severe acute respiratory syndrome coronavirus 2 infection or the development of disease. ⋯ This review provides an overview of the current evidence on (H)CQ therapy in patients with COVID-19 and discusses different strategies for prophylactic (H)CQ therapy (ie, preinfection, postexposure, and postinfection). In particular, the potential cardiac effects, including QT prolongation and arrhythmias, will be addressed. Based on these insights, recommendations will be presented as to which preventive measures should be taken when giving (H)CQ prophylactically, including electrocardiographic monitoring.
-
Human coronavirus-associated myocarditis is known, and a number of coronavirus disease 19 (COVID-19)-related myocarditis cases have been reported. The pathophysiology of COVID-19-related myocarditis is thought to be a combination of direct viral injury and cardiac damage due to the host's immune response. COVID-19 myocarditis diagnosis should be guided by insights from previous coronavirus and other myocarditis experience. ⋯ Arrhythmias are not uncommon in COVID-19 patients, but the pathophysiology is still speculative. Nevertheless, clinicians should be vigilant to provide prompt monitoring and treatment. The long-term impact of COVID-19 myocarditis, including the majority of mild cases, remains unknown.
-
Coronavirus disease 2019 (COVID-19) has presented substantial challenges to patient care and impacted health care delivery, including cardiac electrophysiology practice throughout the globe. Based upon the undetermined course and regional variability of the pandemic, there is uncertainty as to how and when to resume and deliver electrophysiology services for arrhythmia patients. This joint document from representatives of the Heart Rhythm Society, American Heart Association, and American College of Cardiology seeks to provide guidance for clinicians and institutions reestablishing safe electrophysiological care. To achieve this aim, we address regional and local COVID-19 disease status, the role of viral screening and serologic testing, return-to-work considerations for exposed or infected health care workers, risk stratification and management strategies based on COVID-19 disease burden, institutional preparedness for resumption of elective procedures, patient preparation and communication, prioritization of procedures, and development of outpatient and periprocedural care pathways.
-
Early during the current coronavirus disease 19 (COVID-19) pandemic, hydroxychloroquine (HCQ) received a significant amount of attention as a potential antiviral treatment, such that it became one of the most commonly prescribed medications for COVID-19 patients. However, not only has the effectiveness of HCQ remained questionable, but mainly based on preclinical and a few small clinical studies, HCQ is known to be potentially arrhythmogenic, especially as a result of QT prolongation. ⋯ The study results further highlight the proarrhythmic effects of HCQ.
-
Chloroquine and hydroxychloroquine are now being widely used for treatment of COVID-19. Both medications prolong the QT interval and accordingly may put patients at increased risk for torsades de pointes and sudden death. Published guidance documents vary in their recommendations for monitoring and managing these potential adverse effects. ⋯ We found evidence of ventricular arrhythmia in 2 COVID-19 patients from a group of 28 treated with high-dose chloroquine. Limitations of these results are unclear follow-up and possible publication/reporting bias, but there is compelling evidence that chloroquine and hydroxychloroquine induce significant QT-interval prolongation and potentially increase the risk of arrhythmia. Daily electrocardiographic monitoring and other risk mitigation strategies should be considered in order to prevent possible harms from what is currently an unproven therapy.